精英家教网 > 高中数学 > 题目详情
20.如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD是边长为1的正方形,若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是$\frac{1}{4}$,则此长方体的表面积为14.

分析 设长方体的高为x,求出对应的区域的面积,根据几何概型的概率公式建立方程关系即可得到结论.

解答 解:设长方体的高为x,则虚线部分的长为2x+2,高为2x+1,则虚线对应的面积S=(2x+1)(2x+2),长方体的表面积为S=4x+2,
则对应的概率P=$\frac{4x+2}{(2x+1)(2x+2)}$=$\frac{1}{4}$,
即$\frac{2(2x+1)}{2(2x+1)(x+1)}$=$\frac{1}{x+1}$=$\frac{1}{4}$,得x+1=4,
则x=3,
则长方体的表面积S=4×3+2=14,
故答案为:14.

点评 本题主要考查几何概型的概率的计算,根据条件建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.二项式($\frac{1}{{x}^{2}}$-$\sqrt{x}$)n展开式中含有x项,则n可能的取值是(  )
A.10B.9C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(文科)如图,直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,D,E,F分别是AB,BC,CC1的中点.
(Ⅰ)证明:平面AEF⊥平面B1BCC1
(Ⅱ)若∠CA1D=45°,求三棱锥F-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不透明袋子中放有大小相同的5个球,球上分别标有号码1,2,3,4,5,若从袋中任取三个球,则这三个球号码之和为5的倍数的概率为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{2}{9}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点A(m,0)和双曲线x2-y2=1右支上的两个动点B,C,在点B,C的运动过程中,若存在三个等边△ABC,则实数m的取值范围是($\sqrt{6}$,+∞)∪(-∞,-$\sqrt{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,如果输入x=3,则输出k的值为(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知定圆A:${({x+\sqrt{3}})^2}+{y^2}=16$,动圆M过点${B}({\sqrt{3},0})$,且和圆A相切.
(Ⅰ)求动圆圆心M的轨迹E的方程;
(Ⅱ)设不垂直于x轴的直线l与轨迹E交于不同的两点P、Q,点N(4,0).若P、Q、N三点不共线,且∠ONP=∠ONQ.证明:动直线PQ经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9. 公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(  )
(参考数据:$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
A.12B.24C.36D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知公比小于1的等比数列{an}的前n项和为Sn,a1=$\frac{2}{3}$,且13a2=3S3(n∈N*).
(I) 求数列{an}的通项公式;
(Ⅱ)设bn=log3(1-Sn+1),若$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{25}{51}$,求n.

查看答案和解析>>

同步练习册答案