精英家教网 > 高中数学 > 题目详情
lim
x→0
ln(1+x)-x
x2
考点:极限及其运算
专题:函数的性质及应用
分析:由条件利用罗比达法则,求出所给式子的极限.
解答: 解:
lim
x→0
ln(1+x)-x
x2
=
lim
x→0
 
1
1+x
-1
2x
=
lim
x→0
 
-1
(1+x)2
2
=
lim
x→0
 
-1
2(1+x)2
=-
1
2
点评:本题主要考查利用罗比达法则求函数的极限,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

身高与体重有关系可以用(  )分析来分析.
A、残差B、回归
C、二维条形图D、独立检验

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x≥-13,关于x的不等式|x-3|-|2x+10|+x+15-2|a+13|≥0的解集不为空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

边长为2的菱形ABCD中,∠A=60°,沿BD折成直二面角,过点A作PA⊥平面ABC,且AP=2
3

(Ⅰ)求证:PA∥平面DBC;
(Ⅱ)求三棱锥P-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x4+5x3-27x2-101x-70的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-2
x+1

(1)求证:函数f(x)在(-1,+∞)上是增函数;
(2)设a>1,证明方程ax+f(x)=0没有负根.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:kx2-2(k-1)x+k+2>0(k∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知sinα+cosα=
1
4
,求sinα•cosα
(Ⅱ)0.0081
1
4
-(
27
8
)-
2
3
+
3
3
3
2
612

查看答案和解析>>

科目:高中数学 来源: 题型:

已知甲、乙两地相距为s千米,汽车从甲地匀速行驶到乙地,速度每小时不得超过70千米.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:固定部分为a元,可变部分与速度v(单位km╱h)的平方成正比,且比例系数为m.
(1)求汽车全程的运输成本y(以元为单位)关于速度v(单位km╱h)的函数解析式;
(2)为了全程的运输成本最小,汽车应该以多大的速度行驶?

查看答案和解析>>

同步练习册答案