精英家教网 > 高中数学 > 题目详情
10.已知$sinα+cosα=\frac{1}{5}$,且$-\frac{π}{2}≤α≤\frac{π}{2}$,那么tanα等于(  )
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$\frac{4}{3}$

分析 由条件利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα和cosα的值,可得tanα的值.

解答 解:∵已知$sinα+cosα=\frac{1}{5}$ ①,∴1+2sinαcosα=$\frac{1}{25}$,sinαcosα=-$\frac{12}{25}$ ②,
∵$-\frac{π}{2}≤α≤\frac{π}{2}$,∴sinα<0,cosα>0,再结合①②求得sinα=-$\frac{3}{5}$,cosα=$\frac{4}{5}$,∴tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$,
故选:B.

点评 本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数f(x)=x2-4x+4的最小值是(  )
A.3B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆$\frac{x^2}{9}+\frac{y^2}{2}=1$的焦点为F1,F2,点P在椭圆上,若|PF1|=2,则∠F1PF2=(  )
A.30oB.60oC.120oD.150o

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2-cx+bln(ax),其中c,b,a∈R,且a≠0.
(1)当c=-3,b=1时,求函数f(x)的单调区间;
(2)设a=1,若f(x)存在极大值,且对于c的一切可能取值,f(x)的极大值均小于0,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx.
(1)若曲线g(x)=f(x)+$\frac{a}{x}$-1在点(2,g(2))处的切线与直线x+2y-1=0平行,求实数a的值;
(2)若m>n>0,求证$\frac{m-n}{m+n}$<$\frac{lnm-lnn}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该几何体的体积为(  )
A.15B.16C.$\frac{50}{3}$D.$\frac{53}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,矩形ABCD中,AB=2BC=4,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中:
①|BM|是定值;
②点M在某个球面上运动;
③存在某个位置,使DE⊥A1C;
④存在某个位置,使MB∥平面A1DE.
其中正确的命题是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知k是正整数,且1≤k≤2017,则满足方程sin1°+sin2°+…+sink°=sin1°•sin2°…sink°的k有11个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知 函数F(x)=$\frac{a}{3}$x3+$\frac{b}{2}$x2+x(a>0),f(x)=F′(x),若f(-1)=0且对任意实数x均有f(x)≥0成立.
(1)求F(x)表达式;
(2)若h(x)=F(x)+$\frac{t}{2}$x2+(2t-1)x,求h(x)的单调区间.

查看答案和解析>>

同步练习册答案