精英家教网 > 高中数学 > 题目详情
20.已知 函数F(x)=$\frac{a}{3}$x3+$\frac{b}{2}$x2+x(a>0),f(x)=F′(x),若f(-1)=0且对任意实数x均有f(x)≥0成立.
(1)求F(x)表达式;
(2)若h(x)=F(x)+$\frac{t}{2}$x2+(2t-1)x,求h(x)的单调区间.

分析 (1)求出函数的导数,得到关于a,b的不等式组,求出a,b的值即可;(2)求出h(x)的导数,通过讨论a的范围,求出函数的单调区间即可.

解答 解:(1)F′(x)=f(x)=ax2+bx+1,
则有$\left\{\begin{array}{l}{a-b+1=0}\\{{b}^{2}-4a≤0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=2}\end{array}\right.$,
所以F(xx)=$\frac{1}{3}$x3+x2+x;
(2)因为h(x)=F(x)+$\frac{t}{2}$x2+(2t-1)x,
所以h′(x)=x2+(2+t)x+2t,
所以:当t=2时h′(x)≥0恒成立,
所以h(x)的单调递增区间为R,无单调递减区间,
当t>2时,-t<-2,由h′(x)≥0,得:x≥-2或x≤-t,
h(x)的单调递增区间为[-2,+∞),(-∞,-t];单调递减区间为[-2,-t],
当t<2时,-t>-2,由h′≥0,得:x≥-t或x≤-2,
h(x)的单调递增区间为[-t,+∞),(-∞,-2];单调递减区间为[-t,-2].

点评 本题考查了函数的单调性问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知$sinα+cosα=\frac{1}{5}$,且$-\frac{π}{2}≤α≤\frac{π}{2}$,那么tanα等于(  )
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合M={x|x2>4},N={x|x<3},则以下各式正确的是(  )
A.M∪N={x|x<3}B.M∩N={x|2<|x|<3}C.M∩N={x|2<x<3}D.M∪N=R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}是等比数列,Sn为数列{an}的前n项和,且a3=3,S3=9
(1)求数列{an}的通项公式.
(2)设bn=log2$\frac{3}{{a}_{2n+3}}$,且{bn}为递增数列.若cn=$\frac{8}{{b}_{n}{b}_{n+1}}$,求证:c1+c2+…+cn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如上图是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:
①1是函数y=f(x)的最小值点;
②-2是函数y=f(x)的极值点
③y=f(x)在区间(-2,2)上单调递增;
④y=f(x)在x=0处切线的斜率小于零.
则正确命题的序号是(  )
A.①④B.②④C.③④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.把一个皮球放入如图所示的由8根长均为20cm的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都相切,则皮球的半径为(  )
A.l0$\sqrt{3}$cmB.10 cmC.10$\sqrt{2}$cmD.30cm

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.关于函数f(x)=cos(2x-$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$),则下列命题:
①y=f(x)的最大值为$\sqrt{2}$;
②y=f(x)最小正周期是π;
③y=f(x)在区间($\frac{π}{24}$,$\frac{13π}{24}$)上是减函数;
④将函数y=$\sqrt{2}$cos2x的图象向右平移$\frac{π}{24}$个单位后,将与已知函数的图象重合.
其中正确命题的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设向量$\overrightarrow{a}$,$\overrightarrow{b}$不平行,向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$+2$\overrightarrow{b}$平行,则实数λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.侧面都是直角三角形的正三棱锥,底面边长为2,则此棱锥的全面积是(  )
A.$3+\sqrt{3}$B.$6+2\sqrt{3}$C.$6+\sqrt{3}$D.$3+2\sqrt{3}$

查看答案和解析>>

同步练习册答案