精英家教网 > 高中数学 > 题目详情
5.把一个皮球放入如图所示的由8根长均为20cm的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都相切,则皮球的半径为(  )
A.l0$\sqrt{3}$cmB.10 cmC.10$\sqrt{2}$cmD.30cm

分析 底面是一个正方形,一共有四条棱,皮球心距这四棱最小距离是10,而对上面的四条棱距离正方形的中心距离为10,由此可得结论.

解答 解:因为底面是一个正方形,一共有四条棱,皮球球心距这四棱最小距离是10,
∵四条棱距离正方形的中心距离为10,所以皮球的表面与8根铁丝都有接触点时,半径应该是边长的一半
∴球的半径是10
故选B.

点评 本题考查棱锥的结构特征,解题的关键是熟练掌握正四棱锥的结构特征,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该几何体的体积为(  )
A.15B.16C.$\frac{50}{3}$D.$\frac{53}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短轴的一个顶点和两个焦点构成直角三角形,且三角形的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设F1,F2是椭圆C的左、右焦点,过F1,F2任作两条平行直线分别交椭圆于A,B和C,D不同四点,求四边形ABCD的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.6人排成一排,若甲,乙,丙顺序一定,有多少种不同的排法(  )
A.6B.24C.120D.144

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知 函数F(x)=$\frac{a}{3}$x3+$\frac{b}{2}$x2+x(a>0),f(x)=F′(x),若f(-1)=0且对任意实数x均有f(x)≥0成立.
(1)求F(x)表达式;
(2)若h(x)=F(x)+$\frac{t}{2}$x2+(2t-1)x,求h(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=cosxsin(x+\frac{π}{3})-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4}$.
(1)求函数f(x)的单调增区间;
(2)设g(x)=2af(x)+b,若g(x)在[-$\frac{π}{4}$,$\frac{π}{4}}$]上的值域为[2,4],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某设备的使用年数x与所支出的维修总费用y的统计数据如下表:
使用年数x(单位:米)23456
维修总费用y(单位:万元)1.54.55.56.57.5
根据上表可得回归直线方程为$\widehat{y}$=1.3x+$\widehat{a}$.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用10年.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆的中心在原点,焦点为${F_1}(-2\sqrt{3},0),{F_2}(2\sqrt{3},0)$,且长轴长为8.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线y=x+2与椭圆相交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0,有且只有一个正确,则100a+10b+c=(  )
A.12B.21C.102D.201

查看答案和解析>>

同步练习册答案