精英家教网 > 高中数学 > 题目详情
15.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该几何体的体积为(  )
A.15B.16C.$\frac{50}{3}$D.$\frac{53}{3}$

分析 由已知中的三视图,可知该几何体是一个以四边形为底面的四棱锥,其高为5,求出底面面积,代入棱锥体积公式,可得几何体的体积.

解答 解:由已知中的三视图,可知该几何体是一个以四边形为底面的四棱锥,其高为5.
底面面积S=梯形+三角形组成.
S梯形=$\frac{1}{2}$(4+3)×2=7;
S三角形=$\frac{1}{2}$×3×2=3.
∴底面面积S=10.
该几何体的体积$V=\frac{1}{3}×10×5=\frac{50}{3}$.
故选C.

点评 本题考查的知识点是由三视图求体积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.用反证法证明命题“设a,b为实数,则方程x2+ax+b=0没有实数根”时,要做的假设是(  )
A.方程x2+ax+b=0至多有一个实根B.方程x2+ax+b=0至少有一个实根
C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是$\frac{2}{sin1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$\frac{3+4i}{{{{(1-i)}^2}}}$=(  )
A.$-2+\frac{3}{2}i$B.$-2-\frac{3}{2}i$C.$2+\frac{3}{2}i$D.$2-\frac{3}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$sinα+cosα=\frac{1}{5}$,且$-\frac{π}{2}≤α≤\frac{π}{2}$,那么tanα等于(  )
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=lg(-x2+3x+10)的定义域为(-2,5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知某三棱锥的三视图如图所示,图中的3个直角三角形的直角边长度已经标出,则在该三棱锥中,最短的棱和最长的棱所在直线的成角余弦值为(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=a3-cosx,则f'(a)=(  )
A.3a2+sinaB.3a2-sinaC.sinaD.cosa

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.把一个皮球放入如图所示的由8根长均为20cm的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都相切,则皮球的半径为(  )
A.l0$\sqrt{3}$cmB.10 cmC.10$\sqrt{2}$cmD.30cm

查看答案和解析>>

同步练习册答案