精英家教网 > 高中数学 > 题目详情
14.在△ABC中,a,b,c分别是角A,B,C的对边,a,b,c成等比数列,且a2-c2=ac-bc.
(Ⅰ)求∠A的大小;
(Ⅱ)若a=$\sqrt{3}$,且sinA+sin(B-C)=2sin2C,求△ABC的面积.

分析 (Ⅰ)由a,b,c成等比数列,可得b2=ac,且a2-c2=ac-bc,利用余弦定理可得∠A的大小.
(Ⅱ)利用三角形内角和定理sinA=sin(B+C),根据和与差的公式和二倍角公式化简,利用正余弦定理求解b,c即可求△ABC的面积.

解答 解:(Ⅰ)由a,b,c是一个等比数列,
得:b2=ac,
∵a2-c2=ac-bc,
∴bc=b2+c2-a2
那么:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵0<A<π
∴A=$\frac{π}{3}$
(Ⅱ)∵sinA+sin(B-C)=2sin2C,
∴sin(B+C)+sin(B-C)=2sin2C,
得:2sinBcosC=4sinCcosC.
即4sinCcosC-2sinBcosC=0,
可得:cosC=0或sinB=2sinC.
∵0<C<π
∴C=$\frac{π}{2}$或b=2c.
①当C=$\frac{π}{2}$,由题意,A=$\frac{π}{3}$,a=$\sqrt{3}$,
由正弦定理得:$\frac{c}{sin\frac{π}{2}}=\frac{\sqrt{3}}{sin\frac{π}{3}}$,
∴c=2.
故由勾股定理得:b=1.
故得△ABC的面积S=$\frac{1}{2}$absinC=$\frac{1}{2}×\sqrt{3}×1$=$\frac{\sqrt{3}}{2}$.
②当b=2c时,由题意,A=$\frac{π}{3}$,a=$\sqrt{3}$,
所以由余弦定理得:那么:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$,
可得:c=1,b=2.
故得△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×1×2×sin\frac{π}{3}$=$\frac{\sqrt{3}}{2}$
综上①②得:△ABC的面积S=$\frac{\sqrt{3}}{2}$.

点评 本题考查了等比数列、正余弦定理的运用能力,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.2π+$\frac{\sqrt{3}}{3}$B.π+$\frac{\sqrt{3}}{3}$C.2π+$\frac{\sqrt{3}}{3}$D.π+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点$P(\sqrt{3},1)$,Q(cosx,sinx),O为坐标原点,函数$f(x)=\overrightarrow{OP}•\overrightarrow{QP}$.
(1)求函数f(x)的最小值及此时x的值;
(2)若A为△ABC的内角,f(A)=4,BC=3,求△ABC的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足$\left\{\begin{array}{l}{2x-y-4≥0,}&{\;}\\{x-2y-2≤0,}&{\;}\\{y≤6,}&{\;}\end{array}\right.$则z=3x+y的最大值为48.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某厂家为了解广告宣传费与销售轿车台数之间的关系,得到如下统计数据表:
广告费用x(万元)23456
销售轿车y(台数)3461012
根据数据表可得回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=2.4,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,据此模型预测广告费用为9万元时,销售轿车台数为(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若等边△ABC的边长为3,平面内一点M满足$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CB}$+$\frac{1}{2}$$\overrightarrow{CA}$,则$\overrightarrow{AM}$•$\overrightarrow{BM}$的值为(  )
A.-$\frac{15}{2}$B.-2C.$\frac{15}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知${log_a}b=-1,\;{2^a}>3,\;c>1$,设$x=-{log_b}\sqrt{a}$,y=logbc,$z=\frac{1}{3}a$,则x,y,z的大小关系正确的是(  )
A.z>x>yB.z>y>xC.x>y>zD.x>z>y

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知{an}为等差数列,Sn为其前n项和.若S3=12,a2+a4=4,则S6=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C对应的边长分别是a,b,c,且$C=\frac{π}{3}$,c=4.
(Ⅰ)若$sinA=\frac{3}{4}$,求a;
(Ⅱ)若△ABC的面积等于$4\sqrt{3}$,求a,b.

查看答案和解析>>

同步练习册答案