精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=Asin(ωx+φ)+h(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示.
(1)求函数f(x)的解析式;
(2)设0<x<π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和;
(3)在锐角△ABC中,若f(A)=3+$\sqrt{3}$,求f(B)+f(C)的取值范围.

分析 (1)由图易知A=2,h=3,再由周期可得ω=2,再由x=$\frac{5π}{12}$时,f(x)取最大值5和范围可得φ=-$\frac{π}{3}$,可得解析式;
(2)由图象和对称性分类讨论可得;
(3)易得A=$\frac{π}{3}$,由三角函数公式可得f(B)+f(C)=2$\sqrt{3}$sin(2B-$\frac{π}{6}$)+6,又可得$B∈({\frac{π}{6},\frac{π}{2}})$,由三角函数的值域可得.

解答 解:(1)由图易知A=2,h=3,
又$\frac{2π}{ω}$=$\frac{2π}{3}$-(-$\frac{π}{3}$),∴ω=2,
又由图知当x=$\frac{5π}{12}$时,f(x)取最大值5,
∴2×$\frac{5π}{12}$+φ=2kπ+$\frac{π}{2}$,即φ=2kπ-$\frac{π}{3}$,k∈Z,
又$|φ|<\frac{π}{2}$,∴φ=-$\frac{π}{3}$,
∴f(x)=2sin(2x-$\frac{π}{3}$)+3;
(2)∵f(0)=f(π)=3-$\sqrt{3}$,
由图象知,要使方程f(x)=m有两个不同的实数根,有1<m<5且$m≠3-\sqrt{3}$,
当$1<m<3-\sqrt{3}$时,方程的两根关于直线$x=\frac{11π}{12}$对称,则两根之和为$\frac{11π}{6}$
当$3-\sqrt{3}<m<5$时,方程的两根关于直线$x=\frac{5π}{12}$对称,则两根之和为$\frac{5π}{6}$;
(3)∵f(A)=3+$\sqrt{3}$,∴sin(2A-$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
∵A为锐角,∴A=$\frac{π}{3}$
∴f(B)+f(C)=2sin(2B-$\frac{π}{3}$)+2sin(2C-$\frac{π}{3}$)+6
=2sin(2B-$\frac{π}{3}$)+2sin[2($\frac{2π}{3}$-B)-$\frac{π}{3}$]+6
=sin2B-$\sqrt{3}$cos2B+2sin2B+6
=3sin2B-$\sqrt{3}$cos2B+6
=2$\sqrt{3}$sin(2B-$\frac{π}{6}$)+6
又由锐角△ABC及A=$\frac{π}{3}$得$B∈({\frac{π}{6},\frac{π}{2}})$,
∴2B-$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$)
∴sin(2B-$\frac{π}{6}$)∈($\frac{1}{2}$,1],
∴f(B)+f(C)∈(6+$\sqrt{3}$,6+2$\sqrt{3}$]

点评 本题考查三角函数的图象和解析式,涉及两角和与差的三角函数公式和三角函数的对称性,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax2+bx-a+2.
(1)若关于x的不等式f(x)>0的解集是(-1,3),求实数a,b的值;
(2)若b=-1,解关于x的不等式$\frac{f(x)+x+a-2}{ax+b}$+bx>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f($\frac{x}{y}$)=f(x)-f(y),当x>1时,有f(x)>0.
(1)求f(1)的值;
(2)求f(x)的单调性并证明;
(3)若f(4)=2,求f(x)在[1,16]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在下列A到B的四种对应关系中,能构成A到B的映射关系的是(  )
A.(1)(4)B.(2)(3)C.(2)(4)D.(1)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.现有10件产品,其中有2件次品,任意抽出3件检查.
(1)恰有一件是次品的抽法有多少种?
(2)至少一件是次品的抽法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z1=m-2i,z2=3+4i若$\frac{z_1}{z_2}$为实数,则实数m的值为(  )
A.$\frac{8}{3}$B.$\frac{3}{2}$C.-$\frac{8}{3}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合{A}={x|y=$\sqrt{6+x-{x^2}$},B={x|y=log2(2-x)},则A∩(∁RB)=(  )
A.[-2,3]B.[-2,2]C.(2,3]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b)的左、右焦点分别为F1、F2,离心率为$\frac{\sqrt{3}}{2}$,椭圆C与y轴交于点M,△MF1F2的面积为$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设A、B是椭圆C的左、右顶点,P、Q是椭圆上的两点,且满足kAP=2kQB,求证直线PQ过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知${(\root{3}{x}+{x^2})^{2n}}$的展开式的二项式系数和比(3x-1)n的展开式的二项式系数和大992.求${(2x-\frac{1}{x})^{2n}}$的展开式中:
(Ⅰ)二项式系数最大的项.
(Ⅱ)求含$\frac{1}{x^2}$的项.

查看答案和解析>>

同步练习册答案