精英家教网 > 高中数学 > 题目详情
18.已知复数z1=m-2i,z2=3+4i若$\frac{z_1}{z_2}$为实数,则实数m的值为(  )
A.$\frac{8}{3}$B.$\frac{3}{2}$C.-$\frac{8}{3}$D.-$\frac{3}{2}$

分析 若$\frac{z_1}{z_2}$为实数,则设$\frac{z_1}{z_2}$=b,利用待定系数法进行求解即可.

解答 解:∵z1=m-2i,z2=3+4i,
∴若$\frac{z_1}{z_2}$为实数,则设$\frac{z_1}{z_2}$=b,
则z1=bz2
即m-2i=3b+4bi,
即$\left\{\begin{array}{l}{m=3b}\\{-2=4b}\end{array}\right.$,
解得b=-$\frac{1}{2}$,m=-$\frac{3}{2}$,
故选:D

点评 本题主要考查复数的基本运算,根式复数的四则运算法则,利用待定系数法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,a、b、c分别为角A、B、C的对边.已知tanB=$\frac{3}{4}$,且b=2.
(1)当a=$\frac{5}{3}$时,求角A的大小;
(2)求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解不等式:
(1)0$<x-\frac{1}{x}$<1;
(2)$\frac{a(x-1)}{x-2}$>1;
(3)$\frac{x(x-3)}{9-{x}^{2}}$≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,圆O与离心率为$\frac{{\sqrt{3}}}{2}$的椭圆T:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)相切于点M(0,1).
(1)求椭圆T与圆O的方程.
(2)过点M引直线l(斜率存在),若直线l被椭圆T截得的弦长为2.①求直线l的方程;②设P(x,y)为圆O上的点,求点P到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=Asin(ωx+φ)+h(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示.
(1)求函数f(x)的解析式;
(2)设0<x<π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和;
(3)在锐角△ABC中,若f(A)=3+$\sqrt{3}$,求f(B)+f(C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知二次函数f(x)满足f(0)=-3,f(1)=f(-3)=0,则f($\frac{3}{2}$)的值为(  )
A.$-\frac{15}{4}$B.$-\frac{9}{4}$C.$\frac{3}{4}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对的边分别是a,b,c,且满足:a2=(b-c)2+(2-$\sqrt{3}$)bc,又sinAsinB=$\frac{1+cosC}{2}$.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\left\{\begin{array}{l}{|{x}^{2}+5x+4|.x≤0}\\{2|x-a|.x>0}\end{array}\right.$的图象在R上不间断.
(1)求正实数a的值;
(2)当x≥1时,函数h(x)=kx-2|x-2|≥0恒成立.求实数k的取值范围;
(3)若关于x的方程f(x)=m|x|=0恰好有4个解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}$-1.
(1)求函数f(x)在点(1,-$\frac{1}{6}$ )处的切线方程;
(2)若直线y=m与f(x)的图象有三个不同的交点,求m的范围.

查看答案和解析>>

同步练习册答案