精英家教网 > 高中数学 > 题目详情
已知正四面体的棱长为
2
,则它的外接球的表面积的值为
 
考点:球的体积和表面积
专题:计算题,空间位置关系与距离
分析:将正四面体补成一个正方体,正四面体的外接球的直径为正方体的对角线长,即可得出结论.
解答: 解:将正四面体补成一个正方体,则正方体的棱长为1,正方体的对角线长为
3

∵正四面体的外接球的直径为正方体的对角线长,
∴外接球的表面积的值为3π.
故答案为:3π.
点评:本题考查球的内接多面体等基础知识,考查运算求解能力,考查逻辑思维能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一束光线从点F1(-1,0)出发,经直线l:x+2y+6=0上一点M反射后,恰好穿过点F2(1,0).
(1)求点F1关于直线l的对称点F′1的坐标;
(2)求以F1、F2为焦点且过点M的椭圆C的方程;
(3)若P是(2)中椭圆C上的动点,求
PF1
PF2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=xlnx在x0处的函数值与导数值之和等于1,则x0的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1+sin(a-2π)•sin(π+a)-2cos2(-a)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程x3-6x2+9x+a=0有三个实根,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠ACB=30°,D为AC上一点,∠ABD=30°,延长BD至E,连接AE、CE,若∠ECB=2∠EBC,则线段AE与CE的数量关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输入x=16,则输出x的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x-2[x] , x≥0
f(x+1) , x<0
,其中[x]表示不超过x的最大整数,如[1.1]=1,[0.3]=0,若函数y=f(x)-k(x+1)恰有三个不同的零点,则k的取值范围是(  )
A、(-2,-1]∪[
1
2
2
3
B、[-2,-1)∪(0,
1
2
]
C、[
1
2
2
3
]
D、[
1
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2013年2月10日春节.某蔬菜基地2013年2月2日有一批黄瓜进入市场销售,通过市场调查,预测黄瓜的价格f(x)(单位:元/kg)与时间x(x表示距2月10日的天数,单位:天,x∈(0,8]且x∈N*)的数据如下表:
时间x862
价格f(x)8420
(Ⅰ)根据上表数据,从下列函数中选取一个函数描述黄瓜价格f(x)与上市时间x的变化关系:f(x)=
ax+b,f(x)=ax2+bx+c,f(x)=a•bx,其中a≠0;并求出此函数;
(Ⅱ)在日常生活中,黄瓜的价格除了与上市日期相关,与供给量也密不可分.已知供给量h(x)=
1
3
x-
5
18
(x∈N*).在供给量的限定下,黄瓜实际价格g(x)=f(x)•h(x).求黄瓜实际价格g(x)的最小值.

查看答案和解析>>

同步练习册答案