精英家教网 > 高中数学 > 题目详情
17.定义域为[-2,1]的函数f(x)满足f(x+1)=2f(x),且当x∈[0,1]时,f(x)=x2-x.若方程f(x)=m有6个根,则m的取值范围为(  )
A.(-∞,-$\frac{1}{4}$)B.(-$\frac{1}{4}$,-$\frac{1}{8}$)C.(-$\frac{1}{8}$,-$\frac{1}{16}$)D.(-$\frac{1}{16}$,0)

分析 利用函数的性质求出f(x)的解析式,做出f(x)的函数图象,根据函数图象进行判断.

解答 解:当x∈[-1,0]时,x+1∈[1,2],
∴f(x+1)=(x+1)2-(x+1)=x2+x,
∴f(x)=$\frac{1}{2}$f(x+1)=$\frac{1}{2}$(x2+x).
同理,当x∈[-2,-1]时,f(x)=$\frac{1}{4}$(x2+3x+2),
做出f(x)在[-2,1]上的函数图象,如图所示:

∵f(x)=m有6个根,
∴-$\frac{1}{16}$<m<0,
故选:D.

点评 本题考查了根的个数判断与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知f(x+1)是周期为2的奇函数,当-1≤x≤0时,f(x)=-2x(x+1),则f(-$\frac{3}{2}$)的值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a为实数,若函数y=$\frac{3}{x}$图象上存在三个不同的点A(x1,y1),B(x2,y2),C(x3,y3),满足x1+y2=x2+y3=x3+y1=a,则a的值为±$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设关于x的方程k•9x-k•3x+1+6(k-5)=0在[0,2]内有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=aex-x+b,g(x)=x-ln(x+1),(a,b∈R,e为自然对数的底数).
(1)若曲线y=f(x)与y=g(x)在坐标原点处的切线相同,问:
(ⅰ)求f(x)的最小值;
(ⅱ)若x≥0时,f(x)≥kg(x)恒成立,试求实数k的取值范围;
(2)若f(x)有两个不同的零点x1,x2,对任意a∈(0,+∞),b∈R,证明:f′($\frac{{{x_1}+{x_2}}}{2}$)<0(f′(x)为f(x)的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设各项为正的数列{an}中lgan+1lgan+1=lg$\frac{{a}_{n+1}}{{a}_{n}}$,若a1=100,则a11=$1{0}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)满足:对任意α,β∈R,都有f(αβ)=αf(β)+βf(α),且f(2)=2,数列{an}满足an=f(2n)(n∈N+).
(1)求数列{an}的通项公式;
(2)令bn=$\frac{{a}_{n}}{n}$($\frac{{a}_{n}}{n}$-1),cn=$\frac{{b}_{n}}{{b}_{n+1}}$,记Tn=$\frac{1}{n}$(c1+c2+…+cn)(n∈N+).问:是否存在正整数M,使得当n>M时,不等式|Tn-$\frac{1}{4}$|<$\frac{1}{{2}^{10}}$恒成立?若存在,写出一个满足条件的M;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设双曲线C以椭圆$\frac{x^2}{12}$+$\frac{y^2}{8}$=1的两个焦点为焦点,且双曲线C的焦点到其渐近线的距离为1.
(1)求双曲线C的方程;
(2)若直线l:y=kx+$\sqrt{2}$与双曲线C恒有两个不同的交点A和B,且$\overrightarrow{OA}$•$\overrightarrow{OB}$>2(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线分别为l1,l2,直线l:y=-x+c过双曲线C的右焦点F(c,0),且分别与直线l1,l2交于A,B两点,若$\overrightarrow{FA}$=$\overrightarrow{AB}$,则双曲线C的离心率为(  )
A.$\sqrt{10}$B.2$\sqrt{2}$C.4D.$\frac{\sqrt{10}}{3}$

查看答案和解析>>

同步练习册答案