分析 f(x+1)是周期为2的奇函数,可得f(x)为周期为2的函数,即f(x+2)=f(x).由f(x+1)是奇函数,有f(-x+1)=-f(x+1),即f(x)=-f(2-x),即可得出.
解答 解:∵f(x+1)是周期为2的奇函数,
∴f(x)为周期为2的函数,
即f(x+2)=f(x).
由f(x+1)是奇函数,有f(-x+1)=-f(x+1),
即f(x)=-f(2-x),
故f(-$\frac{3}{2}$)=f($\frac{1}{2}$)=-f($\frac{3}{2}$)=-f(-$\frac{1}{2}$),
而-1≤x≤0时,f(x)=-2x(x+1),
∴f(-$\frac{1}{2}$)=-2×$(-\frac{1}{2})$×$(-\frac{1}{2}+1)$=$\frac{1}{2}$,
∴f(-$\frac{3}{2}$)=$-\frac{1}{2}$.
故答案为:$-\frac{1}{2}$.
点评 本题考查了函数的奇偶性、周期性、函数求值,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{6}$ | D. | $\sqrt{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $0<m≤\frac{1}{3}$ | B. | $0<m<\frac{1}{2}$ | C. | $\frac{1}{2}<m≤1$ | D. | $\frac{1}{3}<m<1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{1}{4}$) | B. | (-$\frac{1}{4}$,-$\frac{1}{8}$) | C. | (-$\frac{1}{8}$,-$\frac{1}{16}$) | D. | (-$\frac{1}{16}$,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com