分析 由基本不等式便可得出x=2时,f(x)≥5,再根据f(x)在[0,3]上的单调性,从而得出f(x)在[0,3]上的最小、最大值,从而得出f(x)的值域.
解答 解:根据函数f(x)=x+$\frac{9}{x+1}$(0≤x≤3),
可得f(x)=x+$\frac{9}{x+1}$=(x+1)+$\frac{9}{x+1}$-1≥6-1=5,
当且仅当x=2时,取等号.
又f(x)在[0,2]上单调递减,在[2,3]上单调递增;
又f(0)=9,f(3)=$\frac{21}{4}$;
∴f(x)在[0,3]上的最小值为5,最大值为9;
∴f(x)的值域为[5,9].
故答案为:[5,9].
点评 本题主要考查基本不等式在求函数最小值中的运用,应用基本不等式注意判断等号能否取到,函数值域的概念,根据函数单调性求函数值域的方法,要熟悉函数y=x+$\frac{1}{x}$的单调性,属于基础题.
科目:高中数学 来源: 题型:解答题
| 经济损失不超过4000元 | 经济损失超过4000元 | 合计 | |
| 捐款超过500元 | a=30 | b | |
| 捐款不超过500元 | c | d=6 | |
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 121 | B. | 122 | C. | 243 | D. | 244 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (0,1] | C. | (0,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com