| 经济损失不超过4000元 | 经济损失超过4000元 | 合计 | |
| 捐款超过500元 | a=30 | b | |
| 捐款不超过500元 | c | d=6 | |
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 (1)求得各组区间的中点值,计算各个矩形的面积之和即可每户居民的平均损失;
(2)由频率分布直方图可得,损失超过4000元的居民共有15户;损失超过8000元的居民共有3户,因此,ξ可能取值为0,1,2,运用排列组合的知识,可得各自的概率,由期望公式计算即可得到;
(3)由(2)可得a,b,c,d,运用临界值参考公式,求出K2,与临界值比较,即可有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关.
解答 解:(1)记每户居民的平均损失为$\overline x$元,
则$\overline x$=(1000×0.00015+3000×0.0002+5000×0.00009+7000×0.00003+9000×0.00003)×2000=3360…(4分)
(2)由频率分布直方图,可得超过4000元的居民共有
(0.00009+0.00003+0.00003)×2000×50=15户,
损失超过8000元的居民共有0.00003×2000×50=3户,
因此,ξ的可能值为0,1,2.
P(ξ=0)=$\frac{{C}_{12}^{2}}{{C}_{15}^{2}}$=$\frac{22}{35}$,
P(ξ=1)=$\frac{{C}_{3}^{1}{C}_{12}^{1}}{{C}_{15}^{2}}$=$\frac{12}{35}$,
P(ξ=2)=$\frac{{C}_{3}^{2}}{{C}_{15}^{2}}$=$\frac{1}{35}$,
∴ξ的分布列为
| ξ | 0 | 1 | 2 |
| P | $\frac{22}{35}$ | $\frac{12}{35}$ | $\frac{1}{35}$ |
点评 本题考查根据频率分布直方图求均值,以及随机分布的概率和期望的计算,考查独立性检验的概率情况,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜欢读纸质书 | 不喜欢读纸质书 | 合计 | |
| 男 | 16 | 4 | 20 |
| 女 | 8 | 12 | 20 |
| 合计 | 24 | 16 | 40 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 3 | 4 | 7 | 14 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 17 | x | 4 | 2 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 1 | 2 | 8 | 9 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 10 | 10 | y | 4 |
| 甲校 | 乙校 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com