精英家教网 > 高中数学 > 题目详情
1.函数$y=\frac{{\sqrt{2-x}}}{x-1}$的定义域用区间表示为(-∞,1)∪(1,2].

分析 根据二次根式以及分母不为0,求出关于x的不等式组,解出即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{2-x≥0}\\{x-1≠0}\end{array}\right.$,
解得:x≤2且x≠1,
故答案为:(-∞,1)∪(1,2].

点评 本题考查了二次根式的性质,考查求函数的定义域问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知f(x)=sin(x+$\frac{π}{6}$),若sinα=$\frac{3}{5}$($\frac{π}{2}$<α<π),则f(α+$\frac{π}{12}$)=(  )
A.$\frac{7\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.$\frac{\sqrt{2}}{10}$D.$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α为参数),M是曲线C1上的动点,点P满足$\overrightarrow{OP}=2\overrightarrow{OM}$,
(1)求点P的轨迹方程C2
(2)在以O为极点,X轴的正半轴为极轴的极坐标系中,射线$θ=\frac{π}{3}$与曲线C1,C2交于不同于原点的点A,B求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线C的参数方程是$\left\{\begin{array}{l}{x=1+cosθ}\\{y=2+sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$.(其中坐标系满足极坐标原点与直角坐标系原点重合,极轴与直角坐标系x轴正半轴重合,单位长度相同.)
(Ⅰ)将曲线C的参数方程化为普通方程,把直线l的极坐标方程化为直角坐标方程;
(Ⅱ)设M是直线l与x轴的交点,N是曲线C上一动点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线C1:y2=2x与椭圆C2:$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1在第一象限交于点A,直线y=$\sqrt{2}$x+m与椭圆C2交于B、D两点,且A,B,D三点两两互不重合.
(1)求m的取值范围;
(2)△ABD的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.使函数f(x)=|x|与g(x)=-x2+2x都是增函数的区间可以是(  )
A.[0,1]B.(-∞,1]C.(-∞,0]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知某物体的位移S(米)与时间t(秒)的关系是S(t)=3t-t2
(Ⅰ)求t=0秒到t=2秒的平均速度;
(Ⅱ)求此物体在t=2秒的瞬时速度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A(2,2)和直线l:3x+4y-20=0.求:
(1)过点A和直线l平行的直线方程;
(2)过点A和直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\sqrt{(1+x)(2-x)}$的定义域是集合A,函数g(x)=ln(x-a)的定义域是集合B.
(1)求集合A、B;
(2)若A∩B中至少有一个元素,求实数a的取值范围.

查看答案和解析>>

同步练习册答案