| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{3π}{4}$ |
分析 根据平面向量的数量积与垂直的关系,列出方程即可求出θ的值.
解答 解:向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(2cosθ,-1),
当$\overrightarrow{a}⊥\overrightarrow{b}$时,$\overrightarrow{a}$•$\overrightarrow{b}$=2sinθcosθ-1=sin2θ-1=0,
解得sin2θ=1,
即2θ=$\frac{π}{2}$+2kπ,k∈Z,
所以θ=$\frac{π}{4}$+kπ,k∈Z;
又θ∈(0,π),
所以θ=$\frac{π}{4}$.
故选:B.
点评 本题考查了平面向量的数量积与垂直关系的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | a | $\frac{π}{3}$ | b | $\frac{5π}{6}$ | c |
| f(x) | 0 | 5 | d | -5 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | an=2n-2 | B. | an=8n-2 | C. | an=2n-1 | D. | an=n2-n |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [4,8 ) | B. | (4,8) | C. | (1,8) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {m|m≥-3} | B. | {m|m≤-3} | C. | {m|m≤2} | D. | {m|m≥2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com