精英家教网 > 高中数学 > 题目详情

【题目】某公司生产的某批产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足P= (其中0≤x≤a,a为正常数).已知生产该产品还需投入成本6(P+ )万元(不含促销费用),产品的销售价格定为(4+ )元/件.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,该公司的利润最大?

【答案】
(1)解:由题意知,y=(4+ )p﹣x﹣6(p+ ),

将p= 代入化简得:y=19﹣ x(0≤x≤a)


(2)解:y=22﹣ +x+2)≤22﹣3 =10,

当且仅当 =x+2,即x=2时,上式取等号;

当a≥2时,促销费用投入2万元时,该公司的利润最大;

y=19﹣ x,y′=

∴a<2时,函数在[0,a]上单调递增,

∴x=a时,函数有最大值.即促销费用投入a万元时,该公司的利润最大


【解析】(1)根据产品的利润=销售额﹣产品的成本建立函数关系;(2)利用导数基本不等式可求出该函数的最值,注意等号成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣ax﹣1.
(1)若f(x)在(﹣∞,+∞)上单调递增,求实数a的取值范围;
(2)是否存在实数a,使f(x)在(﹣1,1)上单调递减?若存在,求出a的取值范围;若不存在试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱,底面ABCD为直角梯形,其中OAD中点.

(1)求证:PO⊥平面ABCD

(2)求直线BD与平面PAB所成角的正弦值;

(3)线段AD上是否存在点,使得它到平面PCD的距离为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 平分 的中点, .

(1)证明: 平面.

(2)证明: 平面.

(3)求直线与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{ }中,已知,则等于(  )

A. B. C. D.

【答案】B

【解析】

将数列的等式关系两边取倒数是公差为的等差数列,再根据等差数列求和公式得到数列通项,再取倒数即可得到数列{}的通项.

将等式两边取倒数得到是公差为的等差数列,=,根据等差数列的通项公式的求法得到=.

故答案为:B.

【点睛】

这个题目考查的是数列通项公式的求法数列通项的求法中有常见的已知的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;还有构造新数列的方法,取倒数,取对数的方法等等.

型】单选题
束】
9

【题目】在如图所示的锐角三角形空地中, 欲建一个面积不小于300m2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )

(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的定义域和值域;

(2)设为实数),求时的最大值

(3)对(2)中,若所有的实数恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin(2x﹣ )的图象,只需把函数y=sin(2x+ )的图象(
A.向左平移 个长度单位
B.向右平移 个长度单位
C.向左平移 个长度单位
D.向右平移 个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,曲线C的参数方程为 (θ为参数),直线l经过定点P(3,5),倾斜角为.

(1)写出直线l的参数方程和曲线C的标准方程.

(2)设直线l与曲线C相交于A,B两点,求|PA|·|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x∈(1,+∞),函数f(x)=ex+2ax(a∈R),函数g(x)=| ﹣lnx|+lnx,其中e为自然对数的底数.
(1)若a=﹣ ,求函数f(x)的单调区间;
(2)证明:当a∈(2,+∞)时,f′(x﹣1)>g(x)+a.

查看答案和解析>>

同步练习册答案