已知左焦点为F(-1,0)的椭圆过点E(1,
).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1;
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.
解:(1)依题设c=1,且右焦点F′(1,0).
所以2a=|EF|+|EF′|=
+![]()
=2
,
b2=a2-c2=2,
故所求的椭圆的标准方程为
+
=1.
(2)设A(x1,y1),B(x2,y2),
则
+
=1,①
+
=1.②
②-①,得
+
=0.
所以k1=
=-
=-
=-
.
(3)依题设,k1≠k2.
设M(xM,yM),
又直线AB的方程为y-1=k1(x-1),
即y=k1x+(1-k1),
亦即y=k1x+k2,
代入椭圆方程并化简得(2+3
)x2+6k1k2x+3
-6=0.
于是,xM=
,yM=
,
同理,xN=
,yN=
.
当k1k2≠0时,
直线MN的斜率k=
=![]()
=
.
直线MN的方程为y-
=
(x-
),
即y=
x+(
·
+
),
亦即y=
x-
.
此时直线过定点(0,-
).
当k1k2=0时,直线MN即为y轴,
此时亦过点(0,-
).
综上,直线MN恒过定点,且坐标为(0,-
).
科目:高中数学 来源: 题型:
已知双曲线
-
=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为( )
(A)
-
=1 (B)
-
=1
(C)
-
=1 (D)
-
=1
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C:
+
=1(a>b>0)的一个顶点为A(2,0),离心率为
.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为
时,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
定义:关于x的不等式|x-A|<B的解集叫A的B邻域.
已知a+b-2的a+b邻域为区间(-2,8),其中a、b分别为椭圆
+
=1的长半轴长和短半轴长,若此椭圆的一焦点与抛物线y2=4
x的焦点重合,则椭圆的方程为( )
(A)
+
=1 (B)
+
=1
(C)
+
=1 (D)
+
=1
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,椭圆的中心为原点O,长轴在x轴上,离心率e=
,过左焦点F1作x轴的垂线交椭圆于A、A′两点,
=4.
![]()
(1)求该椭圆的标准方程;
(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP′Q的面积S的最大值,并写出对应的圆Q的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
一个频率分布表(样本容量为50)不小心被损坏了一部分,只记得样本中数据在[20,60)上的频率为0.6,则估计样本在[40,50),[50,60)内的数据个数之和是________.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com