精英家教网 > 高中数学 > 题目详情

已知椭圆C: +=1(a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.

(1)求椭圆C的方程;

(2)当△AMN的面积为时,求k的值.


解:(1)由题设知,椭圆焦点在x轴上,

∴a=2.

由e==得c=,

∴b2=a2-c2=2.

∴椭圆C的方程为+=1.

(2)由消去y,

整理得(1+2k2)x2-4k2x+2k2-4=0.

设M(x1,y1),N(x2,y2).

则Δ=(-4k2)2-4(1+2k2)(2k2-4)>0(※)

且x1+x2=,x1·x2=,

∴|MN|=

=

=

=

=

设点A(2,0)到直线y=k(x-1)的距离为d,

则d=.

∴S△AMN=|MN|·d==,

解得k=±1,

代入(※)式成立,∴k=±1.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


已知定义域为R的函数f(x)既是奇函数,又是周期为3的周期函数,

当x∈(0,)时,f(x)=sin πx,f=0,则函数f(x)在区间[0,6]上的零点个数是(  )

(A)3    (B)5    (C)7    (D)9

查看答案和解析>>

科目:高中数学 来源: 题型:


已知F是双曲线C: -=1(a>0,b>0)的左焦点,B1B2是双曲线的虚轴,M是OB1的中点,过F、M的直线与双曲线C的一个交点为A,且=2,则双曲线C离心率是    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆C: +=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为(  )

(A)   (B)   (C)   (D)

查看答案和解析>>

科目:高中数学 来源: 题型:


椭圆Γ: +=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆Γ的一个交点满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆+=1的两个焦点是F1、F2,点P在该椭圆上,若|PF1|-|PF2|=2,则△PF1F2的面积是    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


已知左焦点为F(-1,0)的椭圆过点E(1,).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.

(1)求椭圆的标准方程;

(2)若P为线段AB的中点,求k1;

(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆C1: +=1(a>b>0)的右顶点为A(1,0),过C1的焦点且垂直长轴的弦长为1.

(1)求椭圆C1的方程;

(2)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:


某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:

人数

管理

技术开发

营销

生产

共计

老年

40

40

40

80

200

中年

80

120

160

240

600

青年

40

160

280

720

1 200

小计

160

320

480

1 040

2 000

(1)若要抽取40人调查身体状况,则应怎样抽样?

(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?

(3)若要抽20人调查对2016年巴黎奥运会筹备情况的了解,则应怎样抽样?

查看答案和解析>>

同步练习册答案