精英家教网 > 高中数学 > 题目详情

已知椭圆C: +=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为(  )

(A)   (B)   (C)   (D)


B

解析:|AF|2=|AB|2+|BF|2-2|AB|·|BF|cos∠ABF=100+64-2×10×8×=36,

则|AF|=6,∠AFB=90°,

半焦距c=|FO|=|AB|

=5,

设椭圆右焦点F2,

连结AF2,

由对称性知|AF2|=|FB|=8,

2a=|AF2|+|AF|=6+8=14,

即a=7,

则e==.故选B.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


设函数f(θ)=sin θ+cos θ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.

(1)若点P的坐标为(,),求f(θ)的值;

(2)若点P(x,y)为平面区域Ω: 上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:


双曲线-=1的两条渐近线的方程为    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


已知双曲线-=1(b∈N*)的左、右两个焦点为F1、F2,P是双曲线上的一点,且满足|PF1||PF2|=|F1F2|2,|PF2|<4.

(1)求b的值;

(2)抛物线y2=2px(p>0)的焦点与该双曲线的右顶点重合,斜率为1的直线经过右顶点,与该抛物线交于A、B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:


椭圆+=1的焦点为F1、F2,点P在椭圆上.若|PF1|=4,则|PF2|=   ,∠F1PF2的大小为    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


椭圆+=1的离心率为(  )

(A)   (B)      (C)      (D)

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆C: +=1(a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.

(1)求椭圆C的方程;

(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆C: +=1(a>0,b>0)的右焦点为F(3,0),且点(-3, )在椭圆C上,则椭圆C的标准方程为    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-2,0),F2(2,0),点A(2,3)在椭圆C1上,过点A的直线L与抛物线C2:x2=4y交于B,C两点,抛物线C2在点B,C处的切线分别为l1,l2,且l1与l2交于点P.

(1)求椭圆C1的方程;

(2)是否存在满足|PF1|+|PF2|=|AF1|+|AF2|的点P?若存在,指出这样的点P有几个(不必求出点P的坐标);若不存在,说明理由.

查看答案和解析>>

同步练习册答案