精英家教网 > 高中数学 > 题目详情
已知数列{xn}满足x1=2,xn+1=
2xn
xn+2
,n∈N+,求数列{xn}的通项.
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:把已知递推式两边取倒数,得到数列{
1
xn
}是等差数列,并求得公差,然后由等差数列的通项公式求得数列{
1
xn
}的通项公式,再取倒数得到数列{xn}的通项.
解答: 解:由xn+1=
2xn
xn+2
,得
1
xn+1
=
xn+2
2xn
=
1
xn
+
1
2

1
xn+1
-
1
xn
=
1
2
,n∈N+
1
x1
=
1
2

∴数列{
1
xn
}是以
1
2
为首项,
1
2
为公差的等差数列.
1
xn
=
1
x1
+(n-1)d=
1
2
+
1
2
(n-1)=
n
2

xn=
2
n

∴数列{xn}的通项为xn=
2
n
点评:本题考查数列递推式,考查了等差关系的确定,训练了等差数列通项公式的求法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义域为(-∞,1]的增函数,
(1)若f(x-2)<f(-
1
x
)
,求x的取值范围;
(2)是否存在实数a,使得f(a-sinx)≤f(a2-sin2x)对一切x∈R恒成立?若不存在,请说明理由;若存在,求出a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式sin2θ-(2
2
+
2
a)sin(θ+
π
4
)-
2
2
cos(θ-
π
4
)
>-3-2a对θ∈[0,
π
2
]恒成立.对于上面的不等式小川同学设x=sinθ+cosθ,则有sin2θ=x2-1,请照这一思路将不等式左边化为关于x的函数y=h(x)
(1)求函数y=h(x)的解析式与定义域
(2)求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

把一根9.14m的铁丝弯成下部为矩形,上部为半圆的框架.设矩形的底边为x,此框架围成的图形的面积为y.
(1)请将y表示成x的函数;
(2)当矩形的底边长2m时,该框架的面积为多少(精确到0.01m2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知甲船正在大海上航行.当它位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达.(供参考使用:tan41°=
3
2
).
(1)试问乙船航行速度的大小;
(2)试问乙船航行的方向(试用方位角表示,譬如北偏东…度).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t),求g(t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是正数组成的数列,其前n项和为Sn,并且对任意的n∈N*,an与2的等差中项等于Sn与2的等比中项.
(1)求数列{an}的通项公式;
(2)设A={a1,a2,…,an,…},bn=2×3n-1,数列{bn}的前n项和为Tn
①求证:对任意的n∈N*,都有bn∈A;
②设数列{bn}的第n项是数列{an}中第r项,求
lim
n→∞
r
Tn
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设AD为BC边上的高,且AD=BC,b,c分别表示角B,C所对的边长,则
b
c
+
c
b
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈[2,+∞),不等式(m-m2)x+x2+1>0恒成立,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案