精英家教网 > 高中数学 > 题目详情
下列命题中正确命题的个数是                                                              (  )
①经过空间一点一定可作一平面与两异面直线都平行;
②已知平面,直线ab,若,则
③有两个侧面垂直于底面的四棱柱为直四棱柱;
④四个侧面两两全等的四棱柱为直四棱柱;
⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
⑥底面是等边三角形,∠APB=∠BPC=∠CPA,则三棱锥PABC是正三棱锥.
A.0B.1C.2D.3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)(注意:在试题卷上作答无效)
如图,四棱锥S-ABCD中,SD底面ABCDAB//DCADDCAB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC .
(Ⅰ)证明:SE=2EB
(Ⅱ)求二面角A-DE-C的大小 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分,第(1)小题6分,第(2)小题6分)
如图,在棱长为1的正方体中,是棱的中点,
(1)求证:
(2)求与平面所成角大小(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,多面体ABCDS中,面ABCD为矩形, 
(1)求证:CD;
(2)求AD与SB所成角的余弦值;
(3)求二面角A—SB—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知ABCD是矩形,AD=4,AB=2,E、F分别是线段AB、BC的中点,PA⊥面ABCD。
(1)证明:PF⊥FD;
(2)在PA上是否存在点G,使得EG//平面PFD。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

半径为的球面上有三点,已知间的球面距离为的球面距离都为,求三点所在的圆面与球心的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图①,分别是直角三角形的中点,,沿将三角形折成如图②所示的锐二面角,若为线段中点.求证:


(1)直线平面;(6分)
(2)平面平面.(8分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正四棱锥S-ABCD中,侧面与底面所成的角为,则它的外接球半径R与内切球半径之比为( )
A.5  B.  C.10  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)

如图,在长方体中,,AB=2,点E在棱AB上移动.
(Ⅰ)证明:
(Ⅱ)当E为AB的中点时,求点A到面的距离;
(Ⅲ)AE等于何值时,二面角的大小为

查看答案和解析>>

同步练习册答案