精英家教网 > 高中数学 > 题目详情
(本题满分12分,第(1)小题6分,第(2)小题6分)
如图,在棱长为1的正方体中,是棱的中点,
(1)求证:
(2)求与平面所成角大小(用反三角函数表示).
(1)证明见解析。
(2)
(本题满分12分,第(1)小题6分,第(2)小题6分)
解:(1)正方体中.……6分
(2)连接与平面所成角,,即与平面所成角大小为……12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)如图,一张平行四边形的硬纸片中,。沿它的对角线把△折起,使点到达平面外点的位置。

(Ⅰ)证明:平面平面
(Ⅱ)如果△为等腰三角形,求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形中,的中点,以为折痕将向上折起,使,且平面平面 
(Ⅰ)求证:
(Ⅱ)求二面角的大小;
(Ⅲ)求点C到面的距离. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在多面体中,四边形是正方形,的中点。

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知矩形ABCD中,AB=2AD=4,ECD的中点,沿AE将三角形AED折起,使DB=
如图,O,H分别为AEAB中点.
(Ⅰ)求证:直线OH//面BDE; 
(Ⅱ)求证:面ADEABCE; 
(Ⅲ)求二面角O-DH-E的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体上任意选择4个顶点,由这4个顶点可能构成如下几何体:
①有三个面为全等的等腰直角三角形,有一个面为等边三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是直角三角形的四面体;
④有三个面为不全等的直角三角形,有一个面为等边三角形的四面体。
以上结论其中正确的是              (写出所有正确结论的编号)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中正确命题的个数是                                                              (  )
①经过空间一点一定可作一平面与两异面直线都平行;
②已知平面,直线ab,若,则
③有两个侧面垂直于底面的四棱柱为直四棱柱;
④四个侧面两两全等的四棱柱为直四棱柱;
⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
⑥底面是等边三角形,∠APB=∠BPC=∠CPA,则三棱锥PABC是正三棱锥.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若四面体的一条棱得长为,其余各条棱得长都为,则这个四面体的体积最大时,的值为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

13.设是边长为的正内的一点,点到三边的距离分别为,则;类比到空间,设是棱长为的空间正四面体内的一点,则点到四个面的距离之和=          

查看答案和解析>>

同步练习册答案