精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,在多面体中,四边形是正方形,的中点。

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的大小。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)(注意:在试题卷上作答无效)
如图,四棱锥S-ABCD中,SD底面ABCDAB//DCADDCAB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC .
(Ⅰ)证明:SE=2EB
(Ⅱ)求二面角A-DE-C的大小 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分,第(1)小题6分,第(2)小题6分)
如图,在棱长为1的正方体中,是棱的中点,
(1)求证:
(2)求与平面所成角大小(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,多面体ABCDS中,面ABCD为矩形, 
(1)求证:CD;
(2)求AD与SB所成角的余弦值;
(3)求二面角A—SB—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)19.(本题满分12分)
如图,已知四面体ABCD中,

(1)指出与面BCD垂直的面,并加以证明.
(2)若AB=BC=1,CD=,二面角C-AD-B的平面角为,求的表达式及其取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)

如图,圆柱OO1内有一个三棱柱ABC-A1B1C1
三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径。
(Ⅰ)证明:平面A1ACC1⊥平面B1BCC1
(Ⅱ)设AB=AA1。在圆柱OO1内随机选取一点,记该点取自于
三棱柱ABC-A1B1C1内的概率为P。
(i)                            当点C在圆周上运动时,求P的最大值;
记平面A1ACC1与平面B1OC所成的角为(0°<  90°)。当P取最大值时,求cos的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,

(Ⅰ)求证:FH∥平面EDB;
(Ⅱ)求证:AC⊥平面EDB;
(Ⅲ)求四面体B—DEF的体积;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

A、B是半径为R的球O的球面上两点,它们的球面距离为,则过A、B的平面中,与球心的最大距离是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正四棱锥S-ABCD中,侧面与底面所成的角为,则它的外接球半径R与内切球半径之比为( )
A.5  B.  C.10  D.

查看答案和解析>>

同步练习册答案