精英家教网 > 高中数学 > 题目详情
9.(x-2)3(2x+1)2展开式中x奇次项的系数之和为9.

分析 展开即可得出.

解答 解:(x-2)3(2x+1)2=(x3-6x2+12x-8)(4x2+4x+1)
=4x5-20x4+25x3+10x2-20x-8
开式中x奇次项的系数之和=4+25-20=9.
故答案为:9.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且acosB+bcosA=2ccosC.
(Ⅰ)求角C;
(Ⅱ)若c=2$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,半径为1的半圆O上有一动点B,MN为直径,A为半径ON延长线上的一点,且OA=2,∠AOB的角平分线交半圆于点C.
(1)若$\overrightarrow{AC}•\overrightarrow{AB}=3$,求cos∠AOC的值;
(2)若A,B,C三点共线,求线段AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系中,求方程$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1对应的图形经过伸缩变换$\left\{\begin{array}{l}x′=\frac{1}{2}x\\ y′=\frac{1}{3}y\end{array}$后得到得图形得方程为x2-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,△ABC的周长为12,AB,AC边的中点分别为F1(-1,0)和F2(1,0),点M为BC边的中点.
(1)求点M的轨迹方程;
(2)设点M的轨迹为曲线T,直线MF1与曲线T另一个交点为N,线段MF2中点为E,记S=S${\;}_{△N{F}_{1}O}$+S${\;}_{△M{F}_{1}E}$,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个不透明的袋子中装有大小相同的12个黑球,4个白球,每次有放回的任意摸取一个球,共摸取3次,若用X表示取到白球的次数,则X的数学期望E(X)与方差D(X)分别为$\frac{3}{4}$,$\frac{9}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC,acosA,ccosB成等差数列.
(1)求角A的大小;
(2)若$a=3\sqrt{2}$,b+c=6,求$|{\overrightarrow{AB}+\overrightarrow{AC}}|$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若${({4x-\frac{1}{{\root{3}{x}}}})^n}$的展开式中各项的系数之和为729,则该展开式中x2的系数为-1280.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在一次水稻试验田验收活动中,将甲、乙两种水稻随机抽取各6株样品,单株籽粒数制成如图所示的茎叶图:
(1)一粒水稻约为0.1克,每亩水稻约为6万株,估计甲种水稻亩产约为多少公斤?
(2)如从甲品种的6株中任选2株,记选到超过187粒的株数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案