分析 (1)由等差数列的性质,三角函数恒等变换的应用化简可得sinA=2sinAcosA,结合sinA≠0,故求得cosA,即可得解A的值.
(2)由已知及余弦定理得bc=6,利用平面向量数量积的运算即可计算得解.
解答 (本题满分为14分)
解:(1)由bcosC,acosA,ccosB成等差数列,
可得bcosC+ccosB=2acosA,…(2分)
故sinBcosC+sinCcosB=2sinAcosA,
所以sin(B+C)=2sinAcosA,…(4分)
又A+B+C=π,
所以sin(B+C)=sinA,
故sinA=2sinAcosA,
又由A∈(0,π),可知sinA≠0,故$cosA=\frac{1}{2}$,所以$A=\frac{π}{3}$. …(6分)
(另法:利用bcosC+ccosB=a求解)
(2)在△ABC中,由余弦定理得${b^2}+{c^2}-2bccos\frac{π}{3}={(3\sqrt{2})^2}$,…(8分)
即b2+c2-bc=18,故(b+c)2-3bc=18,又b+c=6,故bc=6,…(10分)
所以${|{\overrightarrow{AB}+\overrightarrow{AC}}|^2}={(\overrightarrow{AB}+\overrightarrow{AC})^2}={\overrightarrow{AB}^2}+{\overrightarrow{AC}^2}+2\overrightarrow{AB}•\overrightarrow{AC}$=$|\overrightarrow{AB}{|^2}+|\overrightarrow{AC}{|^2}+2|\overrightarrow{AB}|•|\overrightarrow{AC}|cosA$…(12分)
=c2+b2+bc=(b+c)2-bc=30,
故$|{\overrightarrow{AB}+\overrightarrow{AC}}|=\sqrt{30}$. …(14分)
点评 本题主要考查了等差数列的性质,三角函数恒等变换的应用,余弦定理,平面向量数量积的运算在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 时段 | 1 | 2 | 3 | 4 | 5 | 6 |
| 单价x(元) | 800 | 820 | 840 | 860 | 880 | 900 |
| 销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | ±1 | C. | 1或2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com