精英家教网 > 高中数学 > 题目详情
19.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:平面PBD⊥平面PAC;
(Ⅱ)若PA=AB,求PC与平面PBD所成角的正弦值.

分析 (Ⅰ)证明AC⊥BD.PA⊥BD.推出BD⊥平面PAC,然后证明平面PBD⊥平面PAC.
(Ⅱ)以O为坐标原点,建立空间直角坐标系O-xyz,求出相关点的坐标,平面PDB的法向量,设PC与平面PBD所成角为θ,利用空间向量的数量积求解PC与平面PBD所成角的正弦值.

解答 (Ⅰ)证明:∵四边形ABCD是菱形,∴AC⊥BD.
又∵PA⊥平面ABCD,$BD\begin{array}{l}?\\≠\end{array}$平面ABCD,∴PA⊥BD.
又PA∩AC=A,$PA\begin{array}{l}?\\≠\end{array}$平面PAC,$AC\begin{array}{l}?\\≠\end{array}$平面PAC,∴BD⊥平面PAC,
∵$BD\begin{array}{l}?\\≠\end{array}$平面PBD,∴平面PBD⊥平面PAC.
(Ⅱ)解:设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,$AO=CO=\sqrt{3}$,如图,以O为坐标原点,建立空间直角坐标系O-xyz,则$P(\sqrt{3},0,2)$,$A(\sqrt{3},0,0)$,B(0,1,0),D(0,-1,0),$C(-\sqrt{3},0,0)$,所以$\overrightarrow{PB}=(-\sqrt{3},1,-2)$,$\overrightarrow{PD}=(-\sqrt{3},-1,-2)$,$\overrightarrow{PC}=(-2\sqrt{3},0,-2)$.
设平面PDB的法向量为$\overrightarrow n=(x,y,z)$,则$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{PB}=0\\ \overrightarrow n•\overrightarrow{PD}=0\end{array}\right.$则$\left\{\begin{array}{l}-\sqrt{3}x+y-2z=0\\-\sqrt{3}x-y-2z=0\end{array}\right.$解得y=0,令$z=\sqrt{3}$,得x=-2,∴$\overrightarrow n=(-2,0,\sqrt{3})$.
设PC与平面PBD所成角为θ,则$sinθ=|cos<\overrightarrow n,\overrightarrow{PC}>|=|\frac{{\overrightarrow n•\overrightarrow{PC}}}{{|\overrightarrow n|•|\overrightarrow{PC}|}}|=\frac{{2\sqrt{3}}}{{4\sqrt{7}}}=\frac{{\sqrt{21}}}{14}$,
则PC与平面PBD所成角的正弦值为$\frac{{\sqrt{21}}}{14}$.

点评 本题考查直线与平面垂直的判定定理与平面与平面垂直的判定定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知F点为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点,以点F为圆心的圆于C的渐近线相切,且与C交于A,B两点,若AF⊥x轴,则C的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{\sqrt{2}}{2}$,它的一个顶点的坐标为(0,-1)
(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C上存在两个不同的点A、B关于直线y=-$\frac{1}{m}$x+$\frac{1}{2}$对称,求△OAB的面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且acosB+bcosA=2ccosC.
(Ⅰ)求角C;
(Ⅱ)若c=2$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知如图所示的程序框图的输入值x∈[-1,4],则输出y值的取值范围是(  )
A.[0,2]B.[-1,2]C.[-1,15]D.[2,15]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个命题:
①回归直线$\widehaty=b\widehatx+a$恒过样本中心点$(\overline x,\overline y)$;
②“x=6”是“x2-5x-6=0”的必要不充分条件;
③“?x0∈R,使得x02+2x0+3<0”的否定是“对?x∈R,均有x2+2x+3>0”;
④“命题p∨q”为真命题,则“命题?p∧?q”也是真命题.
其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若全集U=R,集合A={x|x≥1}∪{x|x<0},则∁UA=[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,半径为1的半圆O上有一动点B,MN为直径,A为半径ON延长线上的一点,且OA=2,∠AOB的角平分线交半圆于点C.
(1)若$\overrightarrow{AC}•\overrightarrow{AB}=3$,求cos∠AOC的值;
(2)若A,B,C三点共线,求线段AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC,acosA,ccosB成等差数列.
(1)求角A的大小;
(2)若$a=3\sqrt{2}$,b+c=6,求$|{\overrightarrow{AB}+\overrightarrow{AC}}|$的值.

查看答案和解析>>

同步练习册答案