精英家教网 > 高中数学 > 题目详情
19.在一次水稻试验田验收活动中,将甲、乙两种水稻随机抽取各6株样品,单株籽粒数制成如图所示的茎叶图:
(1)一粒水稻约为0.1克,每亩水稻约为6万株,估计甲种水稻亩产约为多少公斤?
(2)如从甲品种的6株中任选2株,记选到超过187粒的株数为ξ,求ξ的分布列和数学期望.

分析 (1)由茎叶图先求出甲种水稻样本单株平均数,由此能估计甲种水稻的亩产.
(2)由题意知甲品种的6株中有2株超过187粒,故ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和Eξ.

解答 解:(1)由茎叶图知:
甲种水稻样本单株平均数为:
$\frac{1}{6}$(168+176+179+186+188+195)=182粒,
把样本平均数看做总体平均数,
则甲种水稻亩产约为:60000×182×$0.1×\frac{1}{1000}$=1092公斤.
(2)由题意知甲品种的6株中有2株超过187粒,故ξ的可能取值为0,1,2,
P(ξ=0)=$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{2}{5}$,
P(ξ=1)=$\frac{{C}_{2}^{1}{C}_{4}^{1}}{{C}_{6}^{2}}$=$\frac{8}{15}$,
P(ξ=2)=$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{1}{15}$,
∴ξ的分布列为:

 ξ 0 1 2
 P $\frac{2}{5}$ $\frac{8}{15}$ $\frac{1}{15}$
Eξ=$0×\frac{2}{5}+1×\frac{8}{15}+2×\frac{1}{15}$=$\frac{2}{3}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.(x-2)3(2x+1)2展开式中x奇次项的系数之和为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若x,y满足约束条件$\left\{\begin{array}{l}{-1≤x-y≤1}\\{2≤x+2y≤3}\end{array}\right.$,则z=2x+y的最大值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在如图所示的五面体ABCDEF中,矩形BCEF所在的平面ABC垂直,AD∥CE,CE=2AD=2,M是BC的中点,在△ABC中,∠BAC=60°,AB=2AC=2.
(1)求证:AM∥平面BDE;
(2)求证:DE⊥平面BDC,并求三棱锥C-DBE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,若输出的S的值为12,则输入的a值可以为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}为等差数列,其前n项和为Sn,2a7-a8=5,则S11为(  )
A.110B.55C.50D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=xln(x-1)-ax2+bx(a,b∈R,a,b为常数,e为自然对数的底数).
(Ⅰ)当a=-1时,讨论函数f(x)在区间$(\frac{1}{e}+1,e+1)$上极值点的个数;
(Ⅱ)当a=1,b=e+2时,对任意的x∈(1,+∞)都有$f(x)<k{e^{\frac{1}{2}x}}$成立,求正实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图程序框图,输出的S为(  )
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{4}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=ex(x2+x+1),定义f1(x)=f'(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N.经计算:f1(x)=ex(x2+3x+2);f2(x)=ex(x2+5x+5);f3(x)=ex(x2+7x+10),…照此规律,则fn(x)=fn(x)=ex[x2+(2n+1)x+n2+1].

查看答案和解析>>

同步练习册答案