精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C所对的边分别为a、b、c,且a<b<c,sinA=
3
a
2b

(Ⅰ)求角B的大小;
(Ⅱ)若a=2,b=
7
,求c及△ABC的面积.
考点:余弦定理,正弦定理
专题:解三角形
分析:(Ⅰ)已知等式变形后,利用正弦定理化简,根据sinA不为0求出cosB的值,即可确定出角B的大小;
(Ⅱ)利用余弦定理列出关系式,把a,b,cosB的值代入求出c的值,利用三角形面积公式求出三角形ABC面积即可.
解答: 解:(Ⅰ)∵sinA=
3
a
2b

3
a=2bsinA,
由正弦定理可得
3
sinA=2sinBsinA,
∵0<A<π,∴sinA>0,
∴sinB=
3
2

∵a<b<c,
∴B<C,
∴0<B<
π
2

则B=
π
3

(Ⅱ)∵a=2,b=
7
,cosB=
1
2

∴由余弦定理可得:7=4+c2-2c,即c2-2c-3=0,
解得:c=3或c=-1(舍去),即c=3,
则S△ABC=
1
2
acsinB=
3
3
2
点评:此题考查了正弦、余弦定理,三角形的面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,AB是⊙O的直径,P在AB的延长线上,PC切⊙O于C,PC=
3
,BP=1,则⊙O的半径为(  )
A、
2
B、
3
2
C、1
D、
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是
3
,D是AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大小;
(3)求直线AB1与平面A1BD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙C1:(x+2
5
)2+y2
=4,⊙C2:(x-2
5
)2+y2
=4,
(1)若动圆M与⊙C1内切,与⊙C2外切,求动圆圆心M的轨迹E的方程;
(2)若直线l:y=kx+1与轨迹E有两个不同的交点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了调查某野生动物保护区内某种野生动物的数量,调查人员逮到这种动物1200只作过标记后放回,一星期后,调查人员再次逮到该种动物1000只,其中作过标记的有100只,估算保护区有这种动物
 
只.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(m2+3m-4)+(m2-2m-24)i,当实数m为何值时?
(Ⅰ)z为实数;
(Ⅱ)z为纯虚数;
(Ⅲ)z=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2-x;
(1)若f(x)在(-∞,-
1
3
)上单调递增,在(-
1
3
,1)上单调递减,在(1,+∞)上单调递增,求实数a的值;
(2)当a=
1
2
时,求证:当x>0时,f(x)≥x-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的多面体ABCDEF中,DE⊥平面ABCD,AD∥BC,平面BCEF∩平面ADEF=EF,∠BAD=60°,AB=2,DE=EF=1.
(Ⅰ)求证:BC∥EF;
(Ⅱ)求三棱锥B-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx2+x+m+2在(-∞,2)上是增函数,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案