精英家教网 > 高中数学 > 题目详情
如图,在等腰梯形OABC中,A(2,2),B(5,2).直线x=t(t>0)由点O向点C移动,至点C完毕,记扫描梯形时所得直线x=t左侧的图形面积为f(t).试求f(t)的解析式,并画出y=f(t)的图象.
由题意知,函数f(t)的定义域为(0,7],
(1)当t∈(0,2]时,f(t)=
1
2
t2

(2)当t∈(2,5]时,f(t)=2t-2.
(3)当t∈(5,7]时,f(t)=-
1
2
(t-7)2+10

综上,f(t)=
1
2
t2.t∈(0,2]
2t-2t∈(2,5]
-
1
2
(t-7)2+10,t∈(5,7]

y=f(t)的图象为:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若a=log20.9,b=3-
1
3
,c=(
1
3
1
2
,(  )
A.a>b>cB.a>c>bC.c>b>aD.b>c>a

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=ax-3+3(a>0且a≠1)的图象必经过点(  )
A.(3,4)B.(3,3)C.(1,0)D.(2,4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,公园内有一块边长为2a的正三角形ABC空地,拟改建成花园,并在其中建一直道DE方便花园管理.设D、E分别在AB、AC上,且DE均分三角形ABC的面积.
(1)设AD=x(x≥a),DE=y,试将y表示为x的函数关系式;
(2)若DE是灌溉水管,为节约成本,希望其最短,DE的位置应在哪里?若DE是参观路线,希望其最长,DE的位置应在哪里?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间,上课开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,并趋于稳定.分析结果和实验表明,设提出和讲述概念的时间为x(单位:分),学生的接受能力为f(x)(f(x)值越大,表示接受能力越强),
f(x)=
-0.1x2+2.6x+44,0<x≤10
60,10<x≤15
-3x+105,15<x≤25
30,25<x≤40

(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?
(2)试比较开讲后5分钟、20分钟、35分钟,学生的接受能力的大小;
(3)若一个数学难题,需要56的接受能力以及12分钟时间,老师能否及时在学生一直达到所需接受能力的状态下讲述完这个难题?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某新兴城市拟建设污水处理厂,现有两个方案:
方案一:建设两个日处理污水量分别为xl和x2(单位:万m3/d)的污水厂,且3≤xl≤5,3≤x2≤5.
方案二:建设一个日处理污水量为xl+x2(单位:万m3/d)的污水厂.
经调研知:
(1)污水处理厂的建设费用P(单位:万元)与日处理污水量x(单位:万m3/d)的关系为P=40x2
(2)每处理1m3的污水所需运行费用Q(单位:元)与日处理污水量x(单位:万m3/d)的关系为:Q=
0.4(6≤x≤10)
0.6(3≤x≤5)

(I)如果仅考虑建设费用,哪个方案更经济?
(Ⅱ)若xl+x2=8,问:只需运行多少年,方案二的总费用就不超过方案一的总费用?
注:一年以250个工作日计算;总费用=建设费用+运行费用.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某宾馆有若干间住房,住宿记录提供了如下信息:①4月2日全部住满,一天住宿费收入为3600元;②4月3日有10间房空着,一天住宿费收人为2800元;③该宾馆每间房每天收费标准相同.
(1)求该宾馆共有多少间住房,每间住房每天收费多少元?
(2)通过市场调查发现,每个住房每天的定价每增加10元,就会有一个房间空闲;己知该宾馆空闲房间每天每间费用10元,有游客居住房间每天每间再增加20元的其他费用,问房价定为多少元时,该宾馆一天的利润最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=,若f(m)<f(-m),则实数m的取值范围是____________.

查看答案和解析>>

同步练习册答案