精英家教网 > 高中数学 > 题目详情

【题目】已知是定义在[-1,1]上的奇函数,且,若任意的,当时,总有

1)判断函数[-1,1]上的单调性,并证明你的结论;

2)解不等式:

3)若对所有的恒成立,其中是常数),求实数的取值范围.

【答案】1)见解析;(2.(3)见解析.

【解析】

1)任取x1x2两数使x1x2∈[-11],且x1x2,进而根据函数为奇函数推知fx1-fx2=fx1+f-x2),让fx1+f-x2)除以x1-x2再乘以x1-x2配出的形式,然后进而判定。

2)根据函数fx)在[-11]上是增函数知x满足的不等式组,进而可解得x的范围

3)由(1)知最大值为,所以要使对所有的恒成立,只需成立,即成立.对p讨论得到。

1上是增函数,证明如下:

任取,且,则,于是有

,故,故上是增函数

2)由上是增函数知:

故不等式的解集为

3)由(1)知最大值为,所以要使对所有的恒成立,

只需成立,即成立.

时,的取值范围为

时,的取值范围为

时,的取值范围为R

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的方程为x﹣y+4=0,曲线C的参数方程为
(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为 ,判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(1+x)﹣x﹣ax2 , a∈R. (Ⅰ)若函数f(x)在区间 上有单调递增区间,求实数a的取值范围;
(Ⅱ)证明不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 图象上所有点的横坐标缩短为原来的 ,纵坐标不变,再向右平移 个单位长度,得到函数y=g(x)的图象,则下列说法正确的是(
A.函数g(x)的一条对称轴是
B.函数g(x)的一个对称中心是
C.函数g(x)的一条对称轴是
D.函数g(x)的一个对称中心是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 有且仅有四个不同的点关于直线y=1的对称点在直线kx+y﹣1=0上,则实数k的取值范围为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2+aln(x+1),a∈R.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)有两个极值点x1 , x2 , 且x1<x2 , 求证:f(x2)≥( ﹣1)x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,过椭圆 右焦点的直线 交椭圆C于M,N两点,P为M,N的中点,且直线OP的斜率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)设另一直线l与椭圆C交于A,B两点,原点O到直线l的距离为 ,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列{an}的各项都是正数,其前n项和为Sn , 且满足:a1=a,rSn=anan+1﹣1,其中a≠1,常数r∈N;
(1)求证:an+2﹣an是一个定值;
(2)若数列{an}是一个周期数列(存在正整数T,使得对任意n∈N* , 都有an+T=an成立,则称{an}为周期数列,T为它的一个周期,求该数列的最小周期;
(3)若数列{an}是各项均为有理数的等差数列,cn=23n1(n∈N*),问:数列{cn}中的所有项是否都是数列{an}中的项?若是,请说明理由,若不是,请举出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在海岸处发现北偏东方向,距海里的处有一艘走私船.处北偏西方向,距海里的处的我方缉私船奉命以海里小时的速度追截走私船,此时走私船正以海里小时的速度从处向北偏东方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.

查看答案和解析>>

同步练习册答案