精英家教网 > 高中数学 > 题目详情
17.已知角α的终边经过点P(2,-1),则$\frac{sinα-cosα}{sinα+cosα}$=   -3.

分析 由角α的终边经过点P(2,-1),利用任意角的三角函数定义求出sinα与cosα的值,代入原式计算即可求出值.

解答 解:∵角α的终边经过点P(1,-2),
∴sinα=-$\frac{1}{\sqrt{5}}$=-$\frac{\sqrt{5}}{5}$,cosα=$\frac{2\sqrt{5}}{5}$
则$\frac{sinα-cosα}{sinα+cosα}$=$\frac{-\frac{\sqrt{5}}{5}-\frac{2\sqrt{5}}{5}}{-\frac{\sqrt{5}}{5}+\frac{2\sqrt{5}}{5}}$=-3.
故答案为:-3.

点评 此题考查了同角三角函数间的基本关系,以及任意角的三角函数定义,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设A={x∈Z|x≤6},B={x∈Z|x>1},那么A∩B等于(  )
A.{x|1<x≤6}B.{1,2,3,4,5,6}C.{2,3,4,5,6}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设△ABC的内角为A,B,C,且sinC=sinB+sin(A-B).
(I)求A的大小;
(II)若a=$\sqrt{7}$,△ABC的面积S△ABC=$\frac{{3\sqrt{3}}}{2}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx+a(1-$\frac{1}{x}$),a∈R.
(1)若a=-1,试求f(x)最小值;
(2)若?x≥1都有f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{x^2}{48}$+$\frac{y^2}{36}$=1,F1,F2是左、右焦点,点A是椭圆上的一点,I是三角形F1AF2内切圆的圆心.
(I)若∠F1AF2=60°,求三角形F1AF2的面积;
(II)直线AI交x轴于D点,求$\frac{AI}{ID}$;
( III)当点A在椭圆上顶点时,圆I和圆G关于直线y=1对称,圆G与x轴的正半轴交于点H,以H为圆心的圆H:(x-2)2+y2=r2(r>0)与圆G交于B,C两点.设P是圆G上异于B,C的任意一点,直线PB、PC分别与x轴交于点M和N,求$\overrightarrow{GM}$•$\overrightarrow{GN}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},求(∁UA)∩(∁UB)=(  )
A.{x|-2≤x≤3}B.{x|x<-2或x>4}C.{x|-3≤x≤4}D.{x|x<-3或x>4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(2-a)lnx+$\frac{1}{x}$+2ax.
(1)当a<0时,讨论f(x)的单调性;
(2)若对任意的a∈(-3,-2),x1,x2∈[1,3]恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算下列各式的值:
(1)${0.027^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{81^{\frac{3}{4}}}-{3^{-1}}+{(\sqrt{2}-1)^0}$
(2)log3$\frac{{\root{4}{27}}}{3}+lg25+lg4+{7^{{{log}_7}2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设S表示所有大于-1的实数构成的集合,确定所有的函数:S→S,满足以下两个条件:
(1)对于S内的所有x和y,f(x+f(y)+xf(y))=y+f(x)+yf(x);
(2)在区间-1<x<0与x>0的每一个内,$\frac{f(x)}{x}$是严格递增的.
求满足上述条件的函数的方程.

查看答案和解析>>

同步练习册答案