精英家教网 > 高中数学 > 题目详情
7.设S表示所有大于-1的实数构成的集合,确定所有的函数:S→S,满足以下两个条件:
(1)对于S内的所有x和y,f(x+f(y)+xf(y))=y+f(x)+yf(x);
(2)在区间-1<x<0与x>0的每一个内,$\frac{f(x)}{x}$是严格递增的.
求满足上述条件的函数的方程.

分析 令y=x可得f(x+f(x)+xf(x))=x+f(x)+xf(x),令x+f(x)+xf(x)=c,则f(c)=c,代入(1)可得f(2c+c2)=2c+c2.对c的符号进行讨论得出c=0即x+f(x)+xf(x)=0,从而得出f(x)的解析式.

解答 解:令y=x得f(x+f(x)+xf(x))=x+f(x)+xf(x),
令x+f(x)+xf(x)=c,则f(c)=c,
带入(1)得f(2c+c2)=2c+c2.∵2+c>2+(-1)=1,∴2c+c2=c(2+c)与c同号.
若c>0,则2c+c2>c,但$\frac{{f(2c+{c^2})}}{{2c+{c^2}}}=\frac{f(c)}{c}=1$,与$\frac{f(x)}{x}$在x>0时严格递增相矛盾,
若c<0,同样导出矛盾,
∴c=0,从而对一切x∈S有x+f(x)+xf(x)=0,
∴$f(x)=-\frac{x}{x+1}$.

点评 本题考查了抽象函数的性质的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知角α的终边经过点P(2,-1),则$\frac{sinα-cosα}{sinα+cosα}$=   -3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若x,y满足$\left\{\begin{array}{l}x+y≤4\\ x-2y≥0\\ x+2y≥4\end{array}$则z=$\frac{y-4}{x}$的取值范围是(  )
A.$(-∞,-\frac{3}{2}]∪[-1,+∞)$B.$(-∞,-\frac{5}{2}]∪[-1,+∞)$C.$[-\frac{5}{2},-\frac{3}{2}]$D.$[-\frac{3}{2},-1]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=$\left\{\begin{array}{l}{3x-b(x<1)}\\{{3}^{x}(x≥1)}\end{array}\right.$,若$f(f(\frac{1}{2}))=9$,则实数b的值为(  )
A.$-\frac{3}{2}$B.$-\frac{9}{8}$C.$-\frac{3}{4}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α∈(-$\frac{π}{2}$,$\frac{π}{2}$),β∈($-\frac{π}{2}$,$\frac{π}{2}$),若tanα,tanβ是方程x2+4$\sqrt{3}$x+5=0的两根,则α+β=(  )
A.$-\frac{2}{3}π$B.$\frac{π}{3}$C.$\frac{2}{3}π$D.$-\frac{2}{3}π$或$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知四边形BCD和BCEG均为直角梯形,AD∥EG、CE∥BG,且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCEG,BC=2AD,CE=2BG.求证:
(Ⅰ)EC⊥CD;
(Ⅱ)求证:AG∥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知一个正方体截取两个全等的小正三棱锥后得到的几何体的主视图和俯视图如图,则该几何体的左视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\frac{3x}{{\sqrt{-1-x}}}$,其定义域为A.
(1)求A;
(2)求f(-2)的值;
(3)判断0与A的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.定义新运算a&b为:a&b=$\left\{\begin{array}{l}{a}&{a≤b}\\{b}&{a>b}\end{array}$,则函数f(x)=sinx&cosx 的值域为[-1,$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

同步练习册答案