精英家教网 > 高中数学 > 题目详情
17.定义新运算a&b为:a&b=$\left\{\begin{array}{l}{a}&{a≤b}\\{b}&{a>b}\end{array}$,则函数f(x)=sinx&cosx 的值域为[-1,$\frac{\sqrt{2}}{2}$].

分析 根据定义和正弦函数与余弦函数的关系,求得f(x)的解析式根据x时范围确定f(x)的值域.

解答 解:根据三角函数的周期性,我们只看在一个最小正周期的情况即可,
设x∈[0,2π],
当$\frac{π}{4}$≤x≤$\frac{5π}{4}$时,sinx≥cosx,f(x)=cosx,f(x)∈[-1,$\frac{\sqrt{2}}{2}$],
当0≤x<$\frac{π}{4}$或$\frac{5π}{4}$<x≤2π时,cosx>sinx,f(x)=sinx,f(x)∈[0,$\frac{\sqrt{2}}{2}$]∪[-1,0].
综合知f(x)的值域为[-1,$\frac{\sqrt{2}}{2}$].
故答案为:[-1,$\frac{\sqrt{2}}{2}$].

点评 本题主要考查了三角函数图象与性质.考查了学生推理和分析能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设S表示所有大于-1的实数构成的集合,确定所有的函数:S→S,满足以下两个条件:
(1)对于S内的所有x和y,f(x+f(y)+xf(y))=y+f(x)+yf(x);
(2)在区间-1<x<0与x>0的每一个内,$\frac{f(x)}{x}$是严格递增的.
求满足上述条件的函数的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC的三边长成公比为$\sqrt{2}$的等比数列,则其最小角的余弦值为$\frac{{5\sqrt{2}}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(α)=$\frac{sin(\frac{π}{2}-α)+sin(-π-α)}{3cos(2π+α)+cos(\frac{3π}{2}-α)}=3$
(1)求$\frac{sinα-3cosα}{sinα+cosα}$的值;
(2)若圆C的圆心在x轴上,圆心到直线l:y=tanα•x的距离为$\sqrt{5}$且直线l被圆所截弦长为$2\sqrt{2}$,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系内,若曲线 C:x2+y2+2ax-4ay+5a2-4=0上所有的点均在第二象限内,则实数a取值范围为(  )
A.(1,+∞)B.(2,+∞)C.(-∞,-2)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知定义在区间$[-\frac{π}{2},π]$上的函数y=f(x)的图象关于直线$x=\frac{π}{4}$对称,当$\frac{π}{4}≤x≤π$时,f(x)=sinx.
(I)求y=f(x)的解析式;
(II)如果关于x的方程f(x)=a有解,那么将方程在a取某一确定值时所求得的所有的解的和记为Ma,求Mb的所有可能取值及对应的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2-x+2a-1(a为实常数).
(1)设h(x)=$\frac{f(x)}{x}$,若a=-1,求证:函数h(x)在区间$(0,\sqrt{3}]$上是增加的;
(2)若函数f(x)在区间[4,5]上是单调递减的,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.${({x^3}-\frac{1}{x^2})^5}$展开式中的常数项是-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列各组函数表示同一函数的是(  )
A.f(x)=x,g(x)=($\sqrt{x}$)2B.f(x)=x2+1,g(t)=t2+1C.f(x)=1,g(x)=$\frac{x}{x}$D.f(x)=x,g(x)=|x|

查看答案和解析>>

同步练习册答案