精英家教网 > 高中数学 > 题目详情
16.若α为锐角,那么2α是(  )
A.钝角B.锐角
C.小于180°的正角D.第一或第二象限角

分析 根据α为锐角,0°<α<90°,得出2α的取值范围.

解答 解:α为锐角,则0°<α<90°
∴0°<2α<180°
∴2α是小于180°的正角.
故选:C.

点评 本题考查了角的定义与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知cos(x+$\frac{π}{12}$)=-$\frac{5}{13}$,则cos(2x-$\frac{5π}{6}$)$\frac{119}{169}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.为了解高一学生对教师教学的意见,现将年级的500名学生编号如下:001,002,003,…,500,按系统抽样的方法从中抽取一个容量为50的样本,且在第一组随机抽得的号码为003,则抽取的第10个号码为093.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:b2017是数列{an}中的第5044项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知空间四边形ABCD中,E,F分别是AC,BD的中点,若AB=CD=4,EF=2,则EF与AB所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中,真命题的是(  )
A.?x0∈R,x02>0B.?x∈R,-1<sinx<1C.?x0∈R,2xo<0D.?x∈R,tanx=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC的外接圆的半径为$\sqrt{2}$,内角A、B、C的对边分别为a、b、c,向量$\overrightarrow m=(sinA-sinC,b-a)$,$\overrightarrow n=(sinA+sinC,\frac{{\sqrt{2}}}{4}sinB)$,且$\overrightarrow m⊥\overrightarrow n$.
(I)求角C;
(II)求△ABC的面积S的最大值,并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(1)已知$cos({\frac{5}{2}π-θ})=\frac{1}{3}$,
求$\frac{sin(π+θ)}{sinθ[sin(π-θ)-1]}+\frac{sin(θ-2π)}{{cos(θ+\frac{3}{2}π)sin(θ-π)-cos(θ-\frac{3}{2}π)}}$的值.
(2)已知$\frac{sinα}{sinα-cosα}=-1$,求$\frac{{{{sin}^2}α+2sinαcosα}}{{2{{sin}^2}α+1}}$的值.

查看答案和解析>>

科目:高中数学 来源:2017届宁夏高三上月考一数学(理)试卷(解析版) 题型:填空题

函数的定义域是_________.

查看答案和解析>>

同步练习册答案