精英家教网 > 高中数学 > 题目详情

【题目】已知.

1)若的两根分别为某三角形两内角的正弦值,求m的取值范围;

2)问是否存在实数m,使得的两根是直角三角形两个锐角的正弦值.

【答案】1;(2)不存在,理由见解析.

【解析】

1)利用二次函数根的分布列出关系式,求的取值范围;

2)假设存在,使得的两根是直角三角形两个锐角的正弦值,利用韦达定理求出的值,然后判断即可.

1)设两根为

∵两根分别为某三角形两内角的正弦值,

则要满足,解得:.

2)假设存在实数,使得的两根是直角三角形两个锐角AB的正弦值,

,∴

,∴

时,原方程为:,此时,不合题意;

时,原方程为:,此时,不合题意.

综上,不存在实数,使得的两根是直角三角形两个锐角的正弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在古装电视剧《知否》中,甲乙两人进行一种投壶比赛,比赛投中得分情况分有初”“贯耳”“散射”“双耳”“依竿五种,其中有初两筹贯耳四筹散射五筹双耳六筹依竿十筹,三场比赛得筹数最多者获胜.假设甲投中有初的概率为,投中贯耳的概率为,投中散射的概率为,投中双耳的概率为,投中依竿的概率为,乙的投掷水平与甲相同,且甲乙投掷相互独立.比赛第一场,两人平局;第二场,甲投了个贯耳,乙投了个双耳,则三场比赛结束时,甲获胜的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足,且

(1)求证:数列是等差数列,并求出数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△的三个内角所对应的边分别为,复数,(其中是虚数单位),且.

(1)求证:,并求边长的值;

(2)判断△的形状,并求当时,角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

(1)若数列是等差数列,且,求实数的值;

(2)若数列满足),且,求证:是等差数列;

(3)设数列是等比数列,试探究当正实数满足什么条件时,数列具有如下性质:对于任意的),都存在,使得,写出你的探究过程,并求出满足条件的正实数的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,已知PA平面ABCD且四边形ABCD为直角梯形,ABC=∠BADPAAD=2,ABBC=1,点ME分别是PAPD的中点

(1)求证:CE//平面BMD

(2)Q为线段BP中点,求直线PA与平面CEQ所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若,证明: .

【答案】(1) ;(2)见解析

【解析】试题分析:1)求出函数的导数,得到关于 的方程组,解出即可;

(2)由(1)可知

,可得,令, 利用导数研究其单调性可得

从而证明.

试题解析:((1)由题意,所以

,所以

,则,与矛盾,故 .

(2)由(1)可知

,可得

时, 单调递减,且

时, 单调递增;且

所以上当单调递减,在上单调递增,且

.

【点睛本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.

型】解答
束】
22

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①函数与函数表示同一个函数;

②奇函数的图象一定通过直角坐标系的原点;

③函数的图象可由的图象向右平移1个单位得到;

④若函数的定义域为,则函数的定义域为

⑤设函数是在区间上图象连续的函数,且,则方程在区间上至少有一实根.

其中正确命题的序号是________.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(

A.已知随机变量,若.

B.已知分类变量的随机变量的观察值为,则当的值越大时,有关的可信度越小.

C.在线性回归模型中,计算其相关指数,则可以理解为:解析变量对预报变量的贡献率约为

D.若对于变量组统计数据的线性回归模型中,相关指数.又知残差平方和为.那么.(注意:

查看答案和解析>>

同步练习册答案