精英家教网 > 高中数学 > 题目详情
已知不等式ax2+bx+1≥0的解集为{x|-5≤x≤1},则a-b=
 
分析:由二次不等式的解集形式,判断出-5,1是相应方程的两个根,利用韦达定理求出a,b,求出a-b的值.
解答:解:∵ax2+bx+1≥0的解集为{x|-5≤x≤1},
∴a<0,-5,1是ax2+bx+1=0的两根
∴-5+1=-
b
a
,-5×1=
1
a

解得a=-
1
5
,b=-
4
5

a-b=-
1
5
+
4
5
=
3
5

故答案为
3
5
点评:本题考查二次不等式的解集若有端点则端点是相应二次方程的根的根,解决二次方程根的问题常采用韦达定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式ax2-bx-2>0的解集为{x|1<x<2}则a+b=
-4
-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2-5x+b>0的解集是{x|-3<x<-2},则不等式ax2-5x+b>0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.
(1)求证:函数y=f(x)必有两个不同的零点.
(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围.
(3)是否存在这样实数的a、b、c及t,使得函数y=f(x)在[-2,1]上的值域为[-6,12].若存在,求出t的值及函数y=f(x)的解析式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2+bx-2>0的解集为(-∞,-2)∪(3,+∞),则a+b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2+bx-3>0的解集为{x|x>1或x<-3},则不等式
b-x
x+a
>0
的解集为(  )

查看答案和解析>>

同步练习册答案