精英家教网 > 高中数学 > 题目详情

已知y=f(x)为定义在R上的奇函数,当x>0时,f(x)=|x2-4x+3|,那么当x<0时,f(x)=


  1. A.
    -|x2+4x+3|
  2. B.
    -|x2-4x+3|
  3. C.
    |-x2-4x+3|
  4. D.
    -|-x2-4x+3|
A
分析:当x<0时,-x>0,结合x>0时,f(x)=|x2-4x+3|,可求出f(-x)的解析式,进而根据y=f(x)为定义在R上的奇函数,f(x)=-f(-x),可得答案.
解答:当x<0时,-x>0
∵当x>0时,f(x)=|x2-4x+3|,
∴f(-x)=|(-x)2-4(-x)+3|=|x2+4x+3|,
又∵y=f(x)为定义在R上的奇函数,
∴当x<0时,f(x)=-f(-x)=-|x2+4x+3|,
故选A
点评:本题考查的知识点是函数奇偶性的性质,其中熟练掌握并正确理解奇函数的定义是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+
5x
的定义域为(0,+∞).设点P是函数图象上的任意一点,过点P分别作直线y=2x和y轴的垂线,垂足分别为M、N.
(1)|PM|•|PN|是否为定值?若是,求出该定值;若不是,说明理由;
(2)设点O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
ax
的定义域为(0,+∞),a>0且当x=1时取得最小值,设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值;
(2)问:PM•PN是否为定值?若是,则求出该定值,若不是,请说明理由;
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax+b存在极值点.
(1)求a的取值范围;
(2)过曲线y=f(x)外的点P(1,0)作曲线y=f(x)的切线,所作切线恰有两条,切点分别为A、B.
(ⅰ)证明:a=b;
(ⅱ)请问△PAB的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.

查看答案和解析>>

同步练习册答案