精英家教网 > 高中数学 > 题目详情
3.在△ABC中,角A、B、C所对的边分别是a、b、c,若b=$\sqrt{2}$asinB,则角A的大小为$\frac{π}{4}$或$\frac{3π}{4}$.

分析 已知等式利用正弦定理化简,根据sinB不为0求出sinA的值,即可确定出A的度数.

解答 解:由b=$\sqrt{2}$asinB,根据正弦定理得:sinB=$\sqrt{2}$sinAsinB,
∵在△ABC中,sinB≠0,
∴sinA=$\frac{\sqrt{2}}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{4}$或$\frac{3π}{4}$.
故答案为:$\frac{π}{4}$或$\frac{3π}{4}$.

点评 此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列说法中正确的是(  )
A.当a>1时,函数y=ax是增函数,因为2>1,所以函数y=2x是增函数,这种推理是合情推理
B.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c,则a∥c,将此结论放到空间中也是如此.这种推理是演绎推理
C.命题$P:?{x_0}∈R,{e^{x_0}}<{x_0}$的否定是¬P:?x∈R,ex>x
D.若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合M={x|x2+3x+2<0},集合{y|y=x2-2},则M∪N=(  )
A.(-2,-1)B.[-2,-1)C.(-2,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某班数学课代表给全班同学出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题.甲:我不会证明.乙:丙会证明.丙:丁会证明.丁:我不会证明.根据以上条件,可以判定会证明此题的人是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若实数x,y满足x>y>0,且$\frac{1}{x-y}$+$\frac{8}{x+2y}$=1,则x+y的最小值为$\frac{25}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了确定某类种子的发芽率,从一大批种子中抽出若干粒进行发芽试验,其结果如下表:
种子粒数n25701307002 0153 0004 000
发芽粒数m24601166391 8192 7133 612
(1)计算各批种子的发芽频率;(保留三位小数)
(2)怎样合理地估计这类种子的发芽率?(保留两位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.极坐标为(1,π)的点M的直角坐标为(  )
A.(1,0)B.(0,1)C.(-1,0)D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z1=1+3i,z2=3+i(i为虚数单位).在复平面内,z1-z2对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某工厂制造一批无盖长方体容器,已知每个容器的容积都是9立方米,底面都是一边长为2米,另一边长为x米的长方形,如果制造底面的材料费用为a元/平方米,制造侧面的材料费用为b元/平方米,其中0<$\frac{b}{a}$<1,设计时材料的厚度忽略不计.
(1)试将制造每个容器的成本y(单位:元)表示成底面边长x(单位:米)的函数;
(2)若要求底面边长x满足1≤x≤2(单位:米),则如何设计容器的尺寸,使其成本最低?

查看答案和解析>>

同步练习册答案