精英家教网 > 高中数学 > 题目详情
14.已知命题P:?x0∈R,x02+2x0+2≤0,则¬p是(  )
A.?x0∈R,x02+2x0+2>0B.?x∈R,x2+2x+2≤0
C.?x∈R,x2+2x+2>0D.?x∈R,x2+2x+2≥0

分析 直接利用特称命题的否定是全称命题写出结果即可.

解答 解:因为特称命题的否定是全称命题,所以,命题P:?x0∈R,x02+2x0+2≤0,则¬p是:?x∈R,x2+2x+2>0.
故选:C.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已 知椭圆C1::$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)与双曲线C2有公共焦点F1、F2,(F1、F2分别为左、右焦点),它们在第一象限交于点M,离心率分别为e1和e2,线段MF1的垂直平分线过F2,则$\frac{1}{e_1}+\frac{e_2}{2}$的最小值为$2+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.湖面上飘着一个小球,湖水结冰后将球取出,冰面上留下一个半径为6cm、深2cm的空穴,则取出该球前,球面上的点到冰面的最大距离为18cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.阅读下面程序框图,为使输出的数据为11,则①处应填的数字可以为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图4,已知四棱锥P-ABCD,底面ABCD是正方形,PA⊥面ABCD,点M是CD的中点,点N是PB的中点,连接AM,AN,MN.
(1)若PA=AB,求证:AN⊥平面PBC.
(2)若MN=5,AD=3,求二面角N-AM-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的内角A,B,C的对边分别是a,b,c,且a2=b2+c2-bc.
(Ⅰ)求角A的大小;
(Ⅱ)若a=$\sqrt{3}$,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知α,β 表示平面,m,n表示直线,给出下列四个命题:
①若α∥β,m?α,n?β,则m∥n; ②若α⊥β,m?α,n?β,则m⊥n;
③若m⊥α,n⊥β,m∥n,则α∥β; ④若m∥α,n∥β,m⊥n,则α⊥β.
其中错误的命题个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.运行如图的程序框图,设输出数据构成的集合为A,则集合A中元素的个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知平面直角坐标系 xOy中,过点 P(-1,-2)的直线l的参数方程为 $\left\{\begin{array}{l}x=-1+tcos{45°}\\ y=-2+tsin{45°}\end{array}\right.$(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为 ρsinθtanθ=2a(a>0),直线 l与曲线C相交于不同的两点M.N
(I)求曲线C和直线 l的普通方程;
(Ⅱ)若|PM|=|MN|,求实数a的值.

查看答案和解析>>

同步练习册答案