精英家教网 > 高中数学 > 题目详情

【题目】求经过点且分别满足下列条件的直线的一般式方程.

(1)倾斜角为45°;

(2)在轴上的截距为5;

(3)在第二象限与坐标轴围成的三角形面积为4.

【答案】(1)(2)(3)

【解析】

1)利用斜率和倾斜角的关系,可以求出斜率,可以用点斜式写出直线方程,最后化为一般方程;

2)设出直线的斜截式方程,把点代入方程中求出斜率,进而可求出方程,化为一般式方程即可;

3)设出直线的截距式方程,利用面积公式和已知条件,可以求出所设参数,即可求出直线方程,化为一般式即可.

(1)因为直线的倾斜角为45°,所以斜率

代入点斜式,即.

(2)因为直线在轴上的截距是5,所以设直线方程为:

代入点,故直线方程为.

(3)设所求直线方程为

解之得

所以直线方程为,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现在很多人喜欢自助游,2017年孝感杨店桃花节,美丽的桃花风景和人文景观迎来众多宾客.某调查机构为了了解自助游是否与性别有关,在孝感桃花节期间,随机抽取了人,得如下所示的列联表:

赞成自助游

不赞成自助游

合计

男性

女性

合计

1若在这人中,按性别分层抽取一个容量为的样本女性应抽人,请将上面的列联表补充完整,并据此资料能否在犯错误的概率不超过前提下认为赞成自助游是与性别有关系?

2若以抽取样本的频率为概率从旅游节大量游客中随机抽取人赠送精美纪念品记这人中赞成自助游人数为的分布列和数学期望.

:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,分别为的中点.

(1)求证:平面

(2)求证:平面平面

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:
(Ⅰ)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;
(Ⅱ)在某场比赛中,考察他前4次投篮命中到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1分.用随机变量X表示第4次投篮后的总分,将频率视为概率,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,过点P分别做圆O的切线PA、PB和割线PCD,弦BE交CD于F,满足P、B、F、A四点共圆.
(Ⅰ)证明:AE∥CD;
(Ⅱ)若圆O的半径为5,且PC=CF=FD=3,求四边形PBFA的外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线截以坐标原点为圆心的圆所得的弦长为.

(1)求圆的方程;

(2)若直线与圆切于第一象限,且与坐标轴交于点,当时,求直线的方程;

(3)设是圆上任意两点,点关于轴的对称点为,若直线分别交轴于点,问是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:
(Ⅰ)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;
(Ⅱ)在某场比赛中,考察他前4次投篮命中到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1分.用随机变量X表示第4次投篮后的总分,将频率视为概率,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在2019迎新年联欢会上,为了活跃大家气氛,设置了“摸球中奖”游戏,桌子上放置一个不透明的箱子,箱子中有3个黄色、3个白色的乒乓球(其体积、质地完全相同)游戏规则:从箱子中随机摸出3个球,若摸得同一颜色的3个球,摸球者中奖价值50元奖品;若摸得非同一颜色的3个球,摸球者中奖价值20元奖品.

(1)摸出的3个球为白球的概率是多少?

(2)假定有10人次参与游戏,试从概率的角度估算一下需要准备多少元钱购买奖品?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为菱形,平面为的中点.

(Ⅰ) 求证: 平面

(Ⅱ) 求证:

(Ⅲ)若为线段上的点,当三棱锥的体积为时,求的值.

查看答案和解析>>

同步练习册答案