精英家教网 > 高中数学 > 题目详情

已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的周期为π,且图象上一个最低点为M.
(1)求f(x)的解析式;
(2)当x∈时,求f(x)的最值.

(1)f(x)=2sin(2)最小值1,最大值.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的部分图像如图所示.

(1)求函数f(x)的解析式,并写出f(x)的单调减区间;
(2)的内角分别是A,B,C.若f(A)=1,,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设平面向量a=(cosx,sinx),b=(cosx+2,sinx),x∈R.
(1)若x∈(0,),证明:a和b不平行;
(2)若c=(0,1),求函数f(x)=a·(b-2c)的最大值,并求出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin+cos,x∈R.
(1)求f(x)的最小正周期和最小值;
(2)已知cos(β-α)=,cos(β+α)=-,0<α<β≤,求证:[f(β)]2-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知关于x的方程2x2-(+1)x+m=0的两根为sinθ和cosθ,且θ∈(0,2π).
(1)求的值;
(2)求m的值;
(3)求方程的两根及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知角α终边上一点P(-,y),且sinα=y,求cosα和tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在△ABC中,sinA+cosA=.
(1)求sinA·cosA;
(2)判断△ABC是锐角三角形还是钝角三角形;
(3)求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a=(5cos x,cos x),b=(sin x,2cos x),设函数f(x)=a·b+|b|2.
(1)当∈时,求函数f(x)的值域;
(2)当x时,若f(x)=8,求函数f的值;
(3)将函数yf(x)的图象向右平移个单位后,再将得到的图象上各点的纵坐标向下平移5个单位,得到函数yg(x)的图象,求函数g(x)的表达式并判断奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点在函数的图象上,直线图象的任意两条对称轴,且的最小值为.
(1)求函数的单递增区间和其图象的对称中心坐标;
(2)设,若,求实数的取值范围.

查看答案和解析>>

同步练习册答案