精英家教网 > 高中数学 > 题目详情

【题目】已知| |=4,| |=8,| |=4
(1)计算:① ,②|4 ﹣2 |
(2)若( +2 )⊥(k ),求实数k的值.

【答案】
(1)解:①∵| + |2= 2+2 + 2=16+2 +64=48,

=﹣16;

②∵|4 ﹣2 |2=16 2﹣16 +4 2

=16×16﹣16×(﹣16)+4×64=16×16×3,

∴|4 ﹣2 |=16


(2)解:∵( +2 )⊥(k ),

∴( +2 )(k )=0,

∴k 2+(2k﹣1) ﹣2 2=0,

即16k﹣16(2k﹣1)﹣2×64=0.∴k=﹣7.

即k=﹣7时, +2 与k 垂直.


【解析】(1)运用向量的平方即为模的平方,计算即可得到所求值;(2)运用向量垂直的条件:数量积为0,化简整理解方程可得k的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系xOy中,设椭圆E: =1(a>b>0),其中b= a,F为椭圆的右焦点,P(1,1)为椭圆E内一点,PF⊥x轴.

(1)求椭圆E的方程;
(2)过P点作斜率为k1 , k2的两条直线分别与椭圆交于点A,C和B,D.若满足|AP||PC|=|BP||DP|,问k1+k2是否为定值?若是,请求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)求函数的单调区间;

(Ⅲ)设函数.若对于任意,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,点是椭圆上在第一象限的点,直线轴于点,直线轴于点.

(Ⅰ)求椭圆的标准方程和离心率;

(Ⅱ)是否存在点,使得直线 与直线平行?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若,求曲线处的切线方程;

(2)若当时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sin(2x+ )+tan cos2x.
(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)求函数f(x)在区间(0, )上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数φ(x)=a为正常数

()f(x)=ln xφ(x)a=4讨论函数f(x)的单调性;

()g(x)=|ln x|+φ(x)且对任意x1x2(02]x1x2都有

()求实数a的取值范围;

()求证:当x(02]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 t为参数), 为参数).
(1)化 的方程为普通方程;
(2)若 上的点对应的参数为 ,Q为 上的动点,求PQ中点M到直线(t为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,抛物线的方程为

(1)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,求的极坐标方程;

(2)直线的参数方程是为参数),交于两点, ,求的斜率.

查看答案和解析>>

同步练习册答案