【题目】已知| |=4,| |=8,| |=4 .
(1)计算:① ,②|4 ﹣2 |
(2)若( +2 )⊥(k ﹣ ),求实数k的值.
科目:高中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系xOy中,设椭圆E: =1(a>b>0),其中b= a,F为椭圆的右焦点,P(1,1)为椭圆E内一点,PF⊥x轴.
(1)求椭圆E的方程;
(2)过P点作斜率为k1 , k2的两条直线分别与椭圆交于点A,C和B,D.若满足|AP||PC|=|BP||DP|,问k1+k2是否为定值?若是,请求出此定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点,点是椭圆上在第一象限的点,直线 交轴于点,直线交轴于点.
(Ⅰ)求椭圆的标准方程和离心率;
(Ⅱ)是否存在点,使得直线 与直线平行?若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=sin(2x+ )+tan cos2x.
(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)求函数f(x)在区间(0, )上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数φ(x)=,a为正常数.
(Ⅰ)若f(x)=ln x+φ(x),且a=4,讨论函数f(x)的单调性;
(Ⅱ)若g(x)=|ln x|+φ(x),且对任意x1,x2∈(0,2],x1≠x2都有
(ⅰ)求实数a的取值范围;
(ⅱ)求证:当x∈(0,2]时,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线 (t为参数), ( 为参数).
(1)化 的方程为普通方程;
(2)若 上的点对应的参数为 ,Q为 上的动点,求PQ中点M到直线(t为参数)距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,抛物线的方程为.
(1)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,求的极坐标方程;
(2)直线的参数方程是(为参数),与交于两点, ,求的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com