【题目】设函数
.
(1)若
,求曲线
在
处的切线方程;
(2)若当
时,
,求
的取值范围.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】试题分析: (1)由已知条件求出
,由点斜式求出切线方程; (2)构造函数
,由
,通过转化为证明
在
上为增函数,求出
的范围.
试题解析:(Ⅰ)当
时,
,
则
,所以
,
又
,所以曲线
在
处的切线方程为
.,即
.
(Ⅱ)由
得
,而
,
所以
,设函数
,
于是问题 转化为
,对任意的
恒成立.
注意到
,所以若
,则
单调递增,
从而
.而
,
所以
等价于
,
分离参数得
,
由均值不等式可得
,
当且仅当
时等号成立,于是
.
当
时,设
,
因为
,又抛物线
开口向上,
所以函数
有两个零点,
设两个零点为
,则
,
于是当
时,
,故
,所以
单调递减,故
,这与题设矛盾,不合题意.
综上,
的取值范围是
.
点睛:本题主要考查了导数的几何意义及恒成立问题转化为求函数的最小值,属于中档题.在(1)中,导数的几何意义是函数在某一点处切线的斜率,所以本题求切线方程是容易题;在(2)中,注意等价转化,转化为求函数
在
上为增函数,分离出参数
,求
的最大值.得到
的范围.
科目:高中数学 来源: 题型:
【题目】已知抛物线
,
是焦点,直线
是经过点
的任意直线.
(Ⅰ)若直线
与抛物线交于
、
两点,且
(
是坐标原点,
是垂足),求动点
的轨迹方程;
(Ⅱ)若
、
两点在抛物线
上,且满足
,求证:直线
必过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A,B两城相距100 km,在两地之间距A城x km处的D地建一核电站给A,B两城供电.为保证城市安全,核电站与城市距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.
(1)求x的取值范围;
(2)把月供电总费用y表示成x的函数;
(3)核电站建在距A城多远,才能使供电费用最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A在直角坐标系
中,曲线
的参数方程为
,(
为参数),直线
的方程为
以
为极点,
轴的正半轴为极轴建立极坐标系.
(1)求曲线
和直线
的极坐标方程;
(2)若直线
与曲线
交于
两点,求![]()
已知不等式
的解集为
.
(1)求
的值;
(2)若
,求证: ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
已知圆
的极坐标方程为
,直线
的参数方程为
(
为参数).若直线
与圆
相交于不同的两点
.
(1)写出圆
的直角坐标方程,并求圆心的坐标与半径;
(2)若弦长
,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市2010年至2016年新开楼盘的平均销售价格
(单位:千元/平米)的统计数据如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售价格y | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
(1)求
关于
的线性回归方程;
(2)利用(1)中的回归方程,分析2010年至2016年该市新开楼盘平均销售价格的变化情况,并预测该市2018年新开楼盘的平均销售价格.
附:参考数据及公式:
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,其中
,若
是
的三条边长,则下列结论中正确的是( )
①存在
,使
、
、
不能构成一个三角形的三条边
②对一切
,都有![]()
③若
为钝角三角形,则存在
,使![]()
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,圆
的极坐标方程为
,若以极点
为原点,极轴所在的直线为
轴建立平面直角坐标系
(1)求圆
的参数方程;
(2)在直角坐标系中,点
是圆
上的动点,试求
的最大值,并求出此时点
的直角坐标;
(3)已知
为参数),曲线
为参数),若版曲线
上各点恒坐标压缩为原来的
倍,纵坐标压缩为原来的
倍,得到曲线
,设点
是曲线
上的一个动点,求它到直线
距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究型学习小组调查研究”中学生使用智能手机对学习的影响”.部分统计数据如下表:
![]()
参考数据:
![]()
参考公式:
,其中![]()
(Ⅰ)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用智能手机对学习有影响?
(Ⅱ)研究小组将该样本中使用智能手机且成绩优秀的4位同学记为
组,不使用智能手机且成绩优秀的8位同学记为
组,计划从
组推选的2人和
组推选的3人中,随机挑选两人在学校升旗仪式上作“国旗下讲话”分享学习经验.求挑选的两人恰好分别来自
、
两组的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com