12£®ÒÑÖªÔ²MµÄÔ²ÐÄΪM£¨-1£¬2£©£¬Ö±Ïßy=x+4±»Ô²M½ØµÃµÄÏÒ³¤Îª$\sqrt{2}$£¬µãPÔÚÖ±Ïßl£ºy=x-1ÉÏ£®
£¨1£©ÇóÔ²MµÄ±ê×¼·½³Ì£»
£¨2£©ÉèµãQÔÚÔ²MÉÏ£¬ÇÒÂú×ã$\overrightarrow{MP}$=4$\overrightarrow{QM}$£¬ÇóµãPµÄ×ø±ê£»
£¨3£©Éè°ë¾¶Îª5µÄÔ²NÓëÔ²MÏàÀ룬¹ýµãP·Ö±ð×÷Ô²MÓëÔ²NµÄÇÐÏߣ¬Çеã·Ö±ðΪA£¬B£¬Èô¶ÔÈÎÒâµÄµãP£¬¶¼ÓÐPA=PB³ÉÁ¢£¬ÇóÔ²ÐÄNµÄ×ø±ê£®

·ÖÎö £¨1£©Çó³öMµ½Ö±Ïßy=x+4µÄ¾àÀ룬ÀûÓô¹¾¶¶¨Àí¼ÆËãÔ²MµÄ°ë¾¶£¬µÃ³öÔ²MµÄ±ê×¼·½³Ì£»
£¨2£©ÓÉ|MQ|=1¿ÉÖª|MP|=4£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽÁз½³Ì½â³öPµã×ø±ê£»
£¨3£©ÓÉÇÐÏßµÄÐÔÖÊ¿ÉÖªPA2=PM2-1£¬PB2=PN2-5£®ÉèN£¨m£¬n£©£¬P£¨x£¬x-1£©£¬Áгö·½³Ì£¬Áî¹ØÓÚxµÄ·½³Ìºã³ÉÁ¢µÃ³öm£¬n£®

½â´ð ½â£º£¨1£©µãMµ½Ö±Ïßy=x+4µÄ¾àÀëd=$\frac{|-1-2+4|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$£®
¡àÔ²MµÄ°ë¾¶r=$\sqrt{£¨\frac{\sqrt{2}}{2}£©^{2}+£¨\frac{\sqrt{2}}{2}£©^{2}}$=1£®
¡àÔ²MµÄ±ê×¼·½³ÌΪ£º£¨x+1£©2+£¨y-2£©2=1£®
£¨2£©¡ßµãQÔÚÔ²MÉÏ£¬¡à|$\overrightarrow{QM}$|=1£®
¡à|$\overrightarrow{MP}$|=4|$\overrightarrow{QM}$|=4£®
ÉèP£¨a£¬b£©Ôò$\left\{\begin{array}{l}{b=a-1}\\{\sqrt{£¨a+1£©^{2}+£¨b-2£©^{2}}=4}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=-1}\\{b=-2}\end{array}\right.$»ò$\left\{\begin{array}{l}{a=3}\\{b=2}\end{array}\right.$£®
¡àµãP×ø±êΪ£¨-1£®-2£©»ò£¨3£¬2£©£®
£¨3£©ÉèN£¨m£¬n£©£¬P£¨x£¬x-1£©£¬
¡ßPA£¬PB·Ö±ðÓëÔ²M£¬Ô²NÏàÇУ¬
¡àPA2=PM2-1£¬PB2=PN2-25£®
¡ß¶ÔÈÎÒâµãP£¬¶¼ÓÐPA=PB£¬
¡à£¨x+1£©2+£¨x-3£©2-1=£¨x-m£©2+£¨x-1-n£©2-25ºã³ÉÁ¢£®
ÕûÀíµÃ£º2£¨m+n-1£©x+33-m2-n2-2n=0ºã³ÉÁ¢£®
¡à$\left\{\begin{array}{l}{m+n-1=0}\\{33-{m}^{2}-{n}^{2}-2n=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=5}\\{n=-4}\end{array}\right.$»ò$\left\{\begin{array}{l}{m=-3}\\{n=4}\end{array}\right.$£®
¡àN£¨5£¬-4£©»òN£¨-3£¬4£©£®
µ±N×ø±êΪ£¨5£¬-4£©Ê±£¬|MN|=$\sqrt{{6}^{2}+{6}^{2}}$=6$\sqrt{2}$£¾6£¬·ûºÏÌâÒ⣬
µ±N×ø±êΪ£¨-3£¬4£©Ê±£¬|MN|=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$£¼6£¬´ËʱÁ½Ô²Ïཻ£¬²»·ûºÏÌâÒ⣮
¡àN£¨5£¬-4£©£®

µãÆÀ ±¾Ì⿼²éÁËÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÔÚµØÇò±íÃæÉÏ£¬µØµãAλÓÚ¶«¾­160¡ã£¬±±Î³30¡ã£¬µØµãBλÓÚÎ÷¾­20¡ã£¬ÄÏγ45¡ã£¬ÔòA¡¢BÁ½µãµÄÇòÃæ¾àÀëÊÇ$\frac{11}{12}$¦ÐR£¨ÉèµØÇòµÄ°ë¾¶ÎªR£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÇúÏßC£ºx2=2py£¨p£¾0£©£¬¹ýÇúÏßCµÄ½¹µãFбÂÊΪk£¨k¡Ù0£©µÄÖ±Ïßl0½»ÇúÏßCÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£¬x1+x2=-kx1x2£¬ÆäÖÐx1£¼x2£®
£¨¢ñ£©ÇóCµÄ·½³Ì£»
£¨¢ò£©·Ö±ð×÷ÔÚµãA£¬B´¦µÄÇÐÏßl1£¬l2£¬Èô¶¯µãQ£¨x0£¬y0£©£¨x1£¼x0£¼x2£©ÔÚÇúÏßCÉÏ£¬ÇúÏßCÔÚµãQ´¦µÄÇÐÏßl½»l1£¬l2ÓÚµãD£¬E£¬ÇóÖ¤£ºµãFÔÚÒÔDEΪֱ¾¶µÄÔ²ÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Ô²x2+y2=4¾­¹ý±ä»»¹«Ê½$\left\{\begin{array}{l}{x¡ä=\frac{1}{2}x}\\{y¡ä=2y}\end{array}\right.$ºó£¬µÃµ½ÇúÏß·½³ÌÊÇ£¨¡¡¡¡£©
A£®$\frac{{x}^{2}}{16}$+y2=1B£®x2+$\frac{{y}^{2}}{16}$=1C£®x2+$\frac{{y}^{2}}{4}$=1D£®$\frac{{x}^{2}}{4}$+y2=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªÖ±Ïßl¹ýÅ×ÎïÏßx2=2py£¨p£¾0£©µÄ½¹µã£¬ÇÒ½»Å×ÎïÏßÓÚA¡¢BÁ½µã£¬ÏÒABµÄÖеã×ø±êΪ£¨1£¬$\sqrt{2}$£©£¬Ôò|AB|µÈÓÚ3$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Å×ÎïÏßy=2x2ÉϵÄÒ»µãµ½½¹µãµÄ¾àÀëΪ1£¬ÔòµãMµÄ×Ý×ø±êΪ$\frac{7}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®£¨$\sqrt{x}$-$\frac{1}{2\root{3}{x}}$£©100µÄÕ¹¿ªÊ½ÖУ¬ÓÐÀíÏîµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®11B£®13C£®15D£®17

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÔÚ¸´Æ½ÃæÄÚ£¬¸´ÊýZ=$\frac{7+i}{3+4i}$£¨iÊÇÐéÊýµ¥Î»£©£¬Ôò¸´Êý$\overline Z$¶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=acos2x+bsin2x+$\sqrt{3}$µÄͼÏó¹ýµã£¨$\frac{¦Ð}{12}$£¬2$\sqrt{3}$£©ºÍµã£¨$\frac{2¦Ð}{3}$£¬-2+$\sqrt{3}$£©£¬Çó£º
£¨1£©º¯ÊýÔÚx¡Ê[-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$]µÄµ¥µ÷µÝ¼õÇø¼ä£»
£¨2£©½«º¯Êýf£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬ÔÙÏòÏÂÆ½ÒÆ$\sqrt{3}$¸öµ¥Î»£¬È»ºó±£³Ö×Ý×ø±ê²»±ä£¬ºá×ø±êËõ¶ÌΪԭÀ´µÄ$\frac{1}{2}$µÃµ½º¯Êýy=g£¨x£©£¬Çóg£¨x£©µÄ×îСÕýÖÜÆÚºÍÔÚ[-$\frac{¦Ð}{4}$£¬-$\frac{¦Ð}{16}$]µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸