精英家教网 > 高中数学 > 题目详情

【题目】已知直线l的参数方程为(t为参数),曲线C的极坐标方程为.

1)求直线l的普通方程和曲线C的直角坐标方程;

2)直线l与曲线C交于AB两点,P(1,3),求的值.

【答案】1y=2x+1.(2

【解析】

1)消去参数,即可求得直线l的普通方程;利用公式,即可求得曲线C的直角坐标方程;

(2)求得直线的标准参数方程,联立曲线的普通方程,得到关于的一元二次方程,利用参数的几何意义,即可求得结果.

1)直线l的参数方程为 (t为参数),

消去参数,可得直线l的普通方程y=2x+1

曲线C的极坐标方程为,即8ρ2sin2θ+ρ2=9

x2+y2+8y2=9

∴曲线C的直角坐标方程为y2=1.

2)直线的参数方程改写为 (t为参数),

代入y2=1

可得t2t+73=0

t1+t2t1t2

.

∴当直线l与曲线C相交时,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》中有一分鹿问题:今有大夫、不更、簪袅、上造、公士,凡五人,共猎得五鹿.欲以爵次分之,问各得几何.”在这个问题中,大夫、不更、簪袅、上造、公士是古代五个不同爵次的官员,现皇帝将大夫、不更、簪枭、上造、公士这5人分成两组(一组2人,一组3人),派去两地执行公务,则大夫、不更恰好在同一组的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,的焦点为,过点的直线的斜率为,与抛物线交于两点,抛物线在点处的切线分别为,两条切线的交点为

1)证明:

2)若的外接圆与抛物线有四个不同的交点,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧面为等边三角形且垂直于底面

.

(1)证明:

(2)若直线与平面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的右焦点为,离心率

(1)求椭圆C的标准方程;

(2)已知动直线l过点F,且与椭圆C交于AB两点,试问x轴上是否存在定点M ,使得恒成立?若存在,求出点M的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列叙述错误的是( ).

A.若事件发生的概率为,则

B.互斥事件不一定是对立事件,但是对立事件一定是互斥事件

C.某事件发生的概率是随着试验次数的变化而变化的

D.5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,且,点M在棱上,点NBC的中点,且满足.

1)证明:平面

2)若M的中点,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“辛卜生公式”给出了求几何体体积的一种计算方法:夹在两个平行平面之间的几何体,如果被平行于这两个平面的任何平面所截,截得的截面面积是截面高的(不超过三次)多项式函数,那么这个几何体的体积,就等于其上底面积、下底面积与四倍中截面面积的和乘以高的六分之一.即,式中依次为几何体的高、上底面积、下底面积、中截面面积.如图,现将曲线与直线轴围成的封闭图形绕轴旋转一周得到一个几何体,则利用辛卜生公式可求得该几何体的体积为(

A.B.C.D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆E1(ab0)的离心率是,过点P(01)的动直线l与椭圆相交于AB两点,当直线l平行于x轴时,直线l被椭圆E截得的线段长为2.

1)求椭圆E的方程;

2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案