【题目】已知直线l的参数方程为(t为参数),曲线C的极坐标方程为.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)直线l与曲线C交于AB两点,P(1,3),求的值.
科目:高中数学 来源: 题型:
【题目】《九章算术》中有一分鹿问题:“今有大夫、不更、簪袅、上造、公士,凡五人,共猎得五鹿.欲以爵次分之,问各得几何.”在这个问题中,大夫、不更、簪袅、上造、公士是古代五个不同爵次的官员,现皇帝将大夫、不更、簪枭、上造、公士这5人分成两组(一组2人,一组3人),派去两地执行公务,则大夫、不更恰好在同一组的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,的焦点为,过点的直线的斜率为,与抛物线交于,两点,抛物线在点,处的切线分别为,,两条切线的交点为.
(1)证明:;
(2)若的外接圆与抛物线有四个不同的交点,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的右焦点为,离心率.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点M ,使得恒成立?若存在,求出点M的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列叙述错误的是( ).
A.若事件发生的概率为,则
B.互斥事件不一定是对立事件,但是对立事件一定是互斥事件
C.某事件发生的概率是随着试验次数的变化而变化的
D.5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“辛卜生公式”给出了求几何体体积的一种计算方法:夹在两个平行平面之间的几何体,如果被平行于这两个平面的任何平面所截,截得的截面面积是截面高的(不超过三次)多项式函数,那么这个几何体的体积,就等于其上底面积、下底面积与四倍中截面面积的和乘以高的六分之一.即,式中,,,依次为几何体的高、上底面积、下底面积、中截面面积.如图,现将曲线与直线及轴围成的封闭图形绕轴旋转一周得到一个几何体,则利用辛卜生公式可求得该几何体的体积为( )
A.B.C.D.16
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆E:+=1(a>b>0)的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l平行于x轴时,直线l被椭圆E截得的线段长为2.
(1)求椭圆E的方程;
(2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得=恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com