精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=﹣(x﹣2m)(x+m+3)(其中m<﹣1),g(x)=2x﹣2.
(1)若命题“log2g(x)<1”是真命题,求x的取值范围;
g(x)<0.若p∧q是真命题,求m的取值范围.
(2)设命题p:x∈(1,+∞),f(x)<0或g(x)<0;命题q:x∈(﹣1,0),f(x

【答案】
(1)解:由log2g(x)<1,得log2(2x﹣2)<1,即0<2x﹣2<2,解得1<x<2.

∴命题“log2g(x)<1”是真命题,x的取值范围是1<x<2;


(2)解:∵x∈(1,+∞),g(x)=2x﹣2>0,

∴若命题p:x∈(1,+∞),f(x)<0或g(x)<0为真命题,则

x∈(1,+∞),f(x)<0,即

x∈(1,+∞),﹣(x﹣2m)(x+m+3)<0,也就是(x﹣2m)(x+m+3)>0.

解得:﹣4

x∈(﹣1,0),g(x)=2x﹣2>0,

∴命题q:x∈(﹣1,0),f(x)g(x)<0,即x∈(﹣1,0),f(x)>0.

也就是x∈(﹣1,0),(x﹣2m)(x+m+3)<0.

即[(﹣1﹣2m)(2+m)][(﹣2m)(m+3)]<0.

解得:﹣3<m<﹣2或﹣ <m<0.

若p∧q是真命题,则m的取值范围为:﹣3<m<﹣2


【解析】(1)把g(x)代入log2g(x)<1,求解对数不等式和指数不等式得到x的范得答案;(2)由题意知x∈(1,+∞),g(x)<0为假命题,则x∈(1,+∞),f(x)<0为真命题,然后利用三个二次结合列关于m的不等式组求得m的范围;再由命题q:x∈(﹣1,0),f(x)g(x)<0,得x∈(﹣1,0),(x﹣2m)(x+m+3)<0,求出m的范围,结合p∧q是真命题,取交集得m的取值范围.
【考点精析】关于本题考查的命题的真假判断与应用,需要了解两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的定义域为,使得不等式成立,关于的不等式的解集记为.

(1)若为真,求实数的取值集合

(2)在(1)的条件下,若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合M={x|x2+3x+2<0},集合 ,则M∪N=(
A.{x|x≥﹣2}
B.{x|x>﹣1}
C.{x|x<﹣1}
D.{x|x≤﹣2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足:,则称数列为“正弦数列”,现将这五个数排成一个“正弦数列”,所有排列种数记为,则二项式的展开式中含项的系数为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的单调区间;

)已知f(x)x=1处取得极大值.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,直线PA⊥平面ABCD,AD∥BC,AB⊥AD,BC=2AB=2AD=4BE=4.

(1)求证:直线DE⊥平面PAC.
(2)若直线PE与平面PAC所成的角的正弦值为 ,求二面角A﹣PC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点.

(1)求椭圆方程;

(2)设不过原点O的直线,与该椭圆交于PQ两点,直线OPOQ的斜率依次为,满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三角形的边长为,将它沿高翻折,使点与点间的距离为,此时四面体外接球表面积为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】17世纪日本数学家们对这个数学关于体积方法的问题还不了解,他们将体积公式“V=kD3”中的常数k称为“立圆术”或“玉积率”,创用了求“玉积率”的独特方法“会玉术”,其中,D为直径,类似地,对于等边圆柱(轴截面是正方形的圆柱叫做等边圆柱)、正方体也有类似的体积公式V=kD3 , 其中,在等边圆柱中,D表示底面圆的直径;在正方体中,D表示棱长,假设运用此“会玉术”,求得的球、等边圆柱、正方体的“玉积率”分别为k1 , k2 , k3=(
A. :1
B. :2
C.1:3:
D.1:

查看答案和解析>>

同步练习册答案