精英家教网 > 高中数学 > 题目详情
如图,已知直三棱柱ABC-A1B1C1中,AB=AC;M.N.P分别是棱BC.CC1.B1C1的中点.A1Q=3QA, BC=
2
AA1

(Ⅰ)求证:PQ∥平面ANB1
(Ⅱ)求证:平面AMN⊥平面AMB1
分析:(Ⅰ)取B1N中点S连PS,证明PQ∥AS,通过PQ?平面ANB1,AS?平面ANB1,说明PQ∥平面ANB1
(Ⅱ)证明AM⊥BC,AM⊥MN,在直角△CMN和△BMB1中,证明MN⊥MB1,MN⊥平面AMB1即可证明平面AMN⊥平面AMB1
解答:(本小题满分12分)
证明:(Ⅰ)取B1N中点S连PS则PS∥CC1,QA∥CC1∴PS∥QA,
且PS=
1
4
CC1=QA∴PSAQ为
平行四边形,…(3分)
∴PQ∥AS,又PQ?平面ANB1,AS?平面ANB1
∴PQ∥平面ANB1…(6分)
(Ⅱ)∵AB=AC,M是棱BC的中点,
∴AM⊥BC
又三棱柱为直三棱柱,∴CC1⊥平面ABC,CC1⊥AM
∴AM⊥平面CBB1C1,AM⊥MN…(9分)
在直角△CMN和△BMB1中,
CM
NC
=
BC
BB1
=
2
BB1
BM
=
BB1
1
2
BC
=
2
   
 直角△CMN∽直角△BB1M
∴MN⊥MB1
又AM∩MB1=M,∴MN⊥平面AMB1
∴平面AMN⊥平面AMB1.…(12分)
点评:本题考查直线与平面平行的判定定理,平面与平面垂直的证明,考查空间想象能力,逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CC1、AB中点.
(Ⅰ)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)判断直线CF和平面AEB1的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上动点,F是AB中点,AC=BC=2,AA1=4.
(1)求证:CF⊥平面ABB1
(2)当E是棱CC1中点时,求证:CF∥平面AEB1
(3)在棱CC1上是否存在点E,使得二面角A-EB1-B的大小是45°,若存在,求CE
的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4,E、F分别是棱CC1、AB中点.
(1)判断直线CF和平面AEB1的位置关系,并加以证明;
(2)求四棱锥A-ECBB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点.
(Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);
(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•莒县模拟)如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CCl、AB中点.
(I)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)证明:直线CF∥平面AEBl

查看答案和解析>>

同步练习册答案