精英家教网 > 高中数学 > 题目详情
已知函数f(x)=alnx-ax-3(a<0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[0,1],函数g(x)=x3+x2[f′(x)+m]在区间(t,2)上总不是单调函数,其中f′(x)为f(x)的导函数,求实数m的取值范围.
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(Ⅰ)求出函数的导数,从而求出单调区间,
(Ⅱ)通过求导求出a的值,从而求出g(x)的表达式,通过解不等式组,求出m的范围.
解答: 解 (Ⅰ)根据题意知,f′(x)=
a(1-x)
x
,(x>0),
当a<0时,
令f′(x)>0,解得:x>1,
令f′(x)<0,解得:0<x<1
∴f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1].
(Ⅱ)∵f′(2)=-
a
2
=1,
∴a=-2,
∴f(x)=-2lnx+2x-3.
∴g(x)=x3+(m+2)x2-2x,
∴g′(x)=3x2+(2m+4)x-2,
∵g(x)在区间(t,2)上总不是单调函数,且g′(0)=-2,
g′(t)<0
g′(2)>0

由题意知:对于任意的t∈[0,1],g′(t)<0恒成立,
g′(0)<0
g′(1)<0
g′(2)>0

∴-
9
2
<m<-
5
2
点评:本题考察了函数的单调性,求参数的范围,导数的应用,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=aex+4x(x∈R)有大于零的极值点,则实数a的取值范围是(  )
A、-4<a<0
B、a<-4
C、a<-
1
4
D、-
1
4
<a<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2alnx.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数g(x)=
2
x
+f(x)在[1,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
4+x2
3
+
12-x
5
,求f′(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-2m)(nx+2)(m>0,n>0)为偶函数.
(1)若k≤f(2)+6m恒成立,求k的取值范围;
(2)当m=1时,若函数g(x)=(a-2)lnx+f(x)在区间(2,3)内不是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,DA⊥平面ABC,DA∥PC,∠ACB=90°,AC=AD=BC=1,PC=2,E为PB的中点.
(Ⅰ)求证:DE∥平面ABC;
(Ⅱ)求二面角E-CD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ASD中,SD=3,CD=
5
,cos∠SDC=-
1
5
5
,SA=2AD,AB⊥SD交SC于B,M为SB上点,且SM=2MB,将△SAB沿AB折起,使平面SAB⊥平面ABCD

(Ⅰ)求证:AM∥平面SCD;
(Ⅱ)求三棱锥S-CDM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy中,圆M的方程为(x-4)2+y2=1.以原点O为极点,以x轴正半轴为极轴,且与直角坐标系取相同的单位长度,建立极坐标系,直线l的极坐标方程为ρsin(θ+
π
6
)=
1
2

(Ⅰ)求直线l的直角坐标方程和圆M的参数方程;
(Ⅱ)求圆M上的点到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈[-π,π],为使方程sinx-
3
cosx=q.
(1)有解;
(2)有两个不同的解;
(3)仅有一解;
请分别求q的值.

查看答案和解析>>

同步练习册答案