精英家教网 > 高中数学 > 题目详情
19.已知函数$f(x)=\sqrt{3}sinxcosx+sin(\frac{π}{4}+x)sin(\frac{π}{4}-x)$.
( I)求函数f(x)对称轴方程和单调递增区间;
( II)对任意$x∈[-\frac{π}{6},\frac{π}{6}]$,f(x)-m≥0恒成立,求实数m的取值范围.

分析 (I)化简函数,利用正弦函数的性质求函数f(x)对称轴方程和单调递增区间;
(II)对任意$x∈[-\frac{π}{6},\frac{π}{6}]$,f(x)-m≥0恒成立,f(x)-m≥0恒成立等价于m≤f(x)min,即可求实数m的取值范围.

解答 解:(I)$f(x)=\frac{{\sqrt{3}}}{2}sin2x+\frac{{\sqrt{2}}}{2}•(cosx+sinx)\frac{{\sqrt{2}}}{2}•(cosx-sinx)$
=$\frac{{\sqrt{3}}}{2}sin2x+\frac{1}{2}({cos^2}x-{sin^2}x)=\frac{{\sqrt{3}}}{2}sin2x+\frac{1}{2}cos2x$=$sin(2x+\frac{π}{6})$(3分)
由$2x+\frac{π}{6}=kπ+\frac{π}{2}⇒x=\frac{kπ}{2}+\frac{π}{6}(k∈Z)$,
由$2kπ-\frac{π}{2}≤2x+\frac{π}{6}≤2kπ+\frac{π}{2}⇒kπ-\frac{π}{3}≤x≤kπ+\frac{π}{6}(k∈Z)$,
所以对称轴是$x=\frac{kπ}{2}+\frac{π}{6}(k∈Z)$,单调增区间是$[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈Z)$.(6分)
(II)由$x∈[-\frac{π}{6},\frac{π}{6}]$得$2x+\frac{π}{6}∈[-\frac{π}{6},\frac{π}{2}]$,从而$sin(2x+\frac{π}{6})∈[-\frac{1}{2},1]$,(11分)
f(x)-m≥0恒成立等价于m≤f(x)min,∴$m≤-\frac{1}{2}$.(12分)

点评 本题考查三角函数的化简、考查三角函数的图象与性质,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.命题“?x0>0,x02-4x0+1<0”的否定是?x>0,x2-4x+1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.动物园要建造一个长方形虎笼,一面可利用原有的墙,其他各面用钢筋网围成.
(1)现有可围36m长网的材料,当虎笼的长、宽各设计为多少时,可使虎笼面积最大?最大面积为多少?
(2)若使虎笼的面积为32m2,则虎笼的长、宽各设计为多少时,可使围成虎笼所用的钢筋网总长最小?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆C的方程为(x-3)2+(y-4)2=22,平面上有A(1,0),B(-1,0)两点,点Q在圆C上,则△ABQ的面积的最大值是(  )
A.6B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=2px(p>0)的焦点为F,P(1,m)是抛物线C上的一点,且|PF|=2.
(1)若椭圆$C':\frac{x^2}{4}+\frac{y^2}{n}=1$与抛物线C有共同的焦点,求椭圆C'的方程;
(2)设抛物线C与(1)中所求椭圆C'的交点为A、B,求以OA和OB所在的直线为渐近线,且经过点P的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若复数z满足2z+$\overline{z}$=3-2i,其中i为虚数单位,则|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\frac{π}{2}$<α<π,0<β<$\frac{π}{2}$,tanα=-$\frac{3}{4}$,cos(β-α)=$\frac{5}{13}$,则sinβ的值为$\frac{63}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,首项为a1且1,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a2n+1)×(log2a2n+3),求数列$\left\{{\frac{1}{b_n}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分图象如图所示,则f(x)的解析式是(  )
A.$f(x)=sin(x+\frac{π}{6})$B.$f(x)=sin(x+\frac{π}{3})$C.$f(x)=sin(2x+\frac{π}{6})$D.$f(x)=sin(2x+\frac{π}{3})$

查看答案和解析>>

同步练习册答案